[蓝藻天然产品的最新进展]。

IF 0.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Tatsufumi Okino
{"title":"[蓝藻天然产品的最新进展]。","authors":"Tatsufumi Okino","doi":"10.1248/yakushi.23-00161-2","DOIUrl":null,"url":null,"abstract":"<p><p>More than 2000 compounds have been reported from cyanobacteria. The most successful example is dolastatin 10, of which a related compound monomethylauristatin E is used as antibody-drug conjugate (ADC) for Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Recently genome-based analyses by Piel led to the discovery of novel compounds from cyanobacteria. W. H. Gerwick found a potential as anti-SARS-CoV-2 agent in gallinamide A, which was reported as a cathepsin L inhibitor. In our group columbamides were isolated from the marine cyanobacterium Moorena bouillonii. The geometry of the double bond was determined by the coupling constant obtained using non-decoupled heteronuclear single quantum coherence (HSQC). The configuration of chloromethine in a long-chain acyl moiety was determined by the Ohrui method at room temperature using a chiral HPLC column. Columbamide D showed biosurfactant activity. One strain many compounds (OSMAC) is a method to discover new compounds by changing culture conditions. Prior to our experiments, attempts to apply OSMAC in cyanobacteria resulted in the induction or up-regulation of only known compounds. The heat shock culture of the freshwater cyanobacterium Microcystis aeruginosa up-regulated a ribosomal peptide argicyclamide C. At the same time, we discovered bis-prenylated and monoprenylated argicyclamides A and B. More recently iron-limited culture produced hydroxylated argicyclamide A. OSMAC and genome-based screening could lead the discovery of unique biologically active compounds from cyanobacteria.</p>","PeriodicalId":23810,"journal":{"name":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","volume":"144 1","pages":"27-32"},"PeriodicalIF":0.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Up to Date of Cyanobacterial Natural Products].\",\"authors\":\"Tatsufumi Okino\",\"doi\":\"10.1248/yakushi.23-00161-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>More than 2000 compounds have been reported from cyanobacteria. The most successful example is dolastatin 10, of which a related compound monomethylauristatin E is used as antibody-drug conjugate (ADC) for Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Recently genome-based analyses by Piel led to the discovery of novel compounds from cyanobacteria. W. H. Gerwick found a potential as anti-SARS-CoV-2 agent in gallinamide A, which was reported as a cathepsin L inhibitor. In our group columbamides were isolated from the marine cyanobacterium Moorena bouillonii. The geometry of the double bond was determined by the coupling constant obtained using non-decoupled heteronuclear single quantum coherence (HSQC). The configuration of chloromethine in a long-chain acyl moiety was determined by the Ohrui method at room temperature using a chiral HPLC column. Columbamide D showed biosurfactant activity. One strain many compounds (OSMAC) is a method to discover new compounds by changing culture conditions. Prior to our experiments, attempts to apply OSMAC in cyanobacteria resulted in the induction or up-regulation of only known compounds. The heat shock culture of the freshwater cyanobacterium Microcystis aeruginosa up-regulated a ribosomal peptide argicyclamide C. At the same time, we discovered bis-prenylated and monoprenylated argicyclamides A and B. More recently iron-limited culture produced hydroxylated argicyclamide A. OSMAC and genome-based screening could lead the discovery of unique biologically active compounds from cyanobacteria.</p>\",\"PeriodicalId\":23810,\"journal\":{\"name\":\"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan\",\"volume\":\"144 1\",\"pages\":\"27-32\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/yakushi.23-00161-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/yakushi.23-00161-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

据报道,蓝藻中含有 2000 多种化合物。其中最成功的例子是多拉他汀 10,其相关化合物单甲基金丝桃素 E 被用作治疗霍奇金淋巴瘤和全身性无性大细胞淋巴瘤的抗体药物结合剂(ADC)。最近,Piel 基于基因组的分析发现了蓝藻中的新型化合物。W. H. Gerwick 发现五倍子酰胺 A 具有抗 SARS-CoV-2 的潜力,据报道它是一种酪蛋白酶 L 抑制剂。我们的研究小组从海洋蓝藻 Moorena bouillonii 中分离出了胆酰胺。双键的几何形状是通过使用非去耦异核单量子相干(HSQC)获得的耦合常数确定的。长链酰基中氯甲基的构型是在室温下利用手性高效液相色谱柱通过 Ohrui 法确定的。哥伦酰胺 D 具有生物表面活性剂活性。一株多化合物(OSMAC)是一种通过改变培养条件发现新化合物的方法。在我们的实验之前,尝试在蓝藻中应用 OSMAC 的结果只是诱导或上调了已知化合物。淡水蓝藻铜绿微囊藻(Microcystis aeruginosa)的热休克培养上调了核糖体肽水杨酰胺 C。OSMAC 和基于基因组的筛选可帮助我们从蓝藻中发现独特的生物活性化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Up to Date of Cyanobacterial Natural Products].

More than 2000 compounds have been reported from cyanobacteria. The most successful example is dolastatin 10, of which a related compound monomethylauristatin E is used as antibody-drug conjugate (ADC) for Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Recently genome-based analyses by Piel led to the discovery of novel compounds from cyanobacteria. W. H. Gerwick found a potential as anti-SARS-CoV-2 agent in gallinamide A, which was reported as a cathepsin L inhibitor. In our group columbamides were isolated from the marine cyanobacterium Moorena bouillonii. The geometry of the double bond was determined by the coupling constant obtained using non-decoupled heteronuclear single quantum coherence (HSQC). The configuration of chloromethine in a long-chain acyl moiety was determined by the Ohrui method at room temperature using a chiral HPLC column. Columbamide D showed biosurfactant activity. One strain many compounds (OSMAC) is a method to discover new compounds by changing culture conditions. Prior to our experiments, attempts to apply OSMAC in cyanobacteria resulted in the induction or up-regulation of only known compounds. The heat shock culture of the freshwater cyanobacterium Microcystis aeruginosa up-regulated a ribosomal peptide argicyclamide C. At the same time, we discovered bis-prenylated and monoprenylated argicyclamides A and B. More recently iron-limited culture produced hydroxylated argicyclamide A. OSMAC and genome-based screening could lead the discovery of unique biologically active compounds from cyanobacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
169
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信