Kai-Hui Zhang, Fei-Fei Zhang, Zhi-Ling Zhang, Ke-Fei Fang, Wen-Xing Sun, Na Kong, Min Wu, Hai-Ou Liu, Yan Liu, Zhi Li, Qing-Qing Cai, Yang Wang, Quan-Wei Wei, Peng-Cheng Lin, Yan Lin, Wei Xu, Cong-Jian Xu, Yi-Yuan Yuan, Shi-Min Zhao
{"title":"促卵泡激素可控制颗粒细胞谷氨酰胺的合成,从而调节排卵。","authors":"Kai-Hui Zhang, Fei-Fei Zhang, Zhi-Ling Zhang, Ke-Fei Fang, Wen-Xing Sun, Na Kong, Min Wu, Hai-Ou Liu, Yan Liu, Zhi Li, Qing-Qing Cai, Yang Wang, Quan-Wei Wei, Peng-Cheng Lin, Yan Lin, Wei Xu, Cong-Jian Xu, Yi-Yuan Yuan, Shi-Min Zhao","doi":"10.1093/procel/pwad065","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility. Inadequate understanding of the ovulation drivers hinders PCOS intervention. Herein, we report that follicle stimulating hormone (FSH) controls follicular fluid (FF) glutamine levels to determine ovulation. Murine ovulation starts from FF-exposing granulosa cell (GC) apoptosis. FF glutamine, which decreases in pre-ovulation porcine FF, elevates in PCOS patients FF. High-glutamine chow to elevate FF glutamine inhibits mouse GC apoptosis and induces hormonal, metabolic, and morphologic PCOS traits. Mechanistically, follicle-development-driving FSH promotes GC glutamine synthesis to elevate FF glutamine, which maintain follicle wall integrity by inhibiting GC apoptosis through inactivating ASK1-JNK apoptotic pathway. FSH and glutamine inhibit the rapture of cultured murine follicles. Glutamine removal or ASK1-JNK pathway activation with metformin or AT-101 reversed PCOS traits in PCOS models that are induced with either glutamine or EsR1-KO. These suggest that glutamine, FSH, and ASK1-JNK pathway are targetable to alleviate PCOS.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"512-529"},"PeriodicalIF":13.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Follicle stimulating hormone controls granulosa cell glutamine synthesis to regulate ovulation.\",\"authors\":\"Kai-Hui Zhang, Fei-Fei Zhang, Zhi-Ling Zhang, Ke-Fei Fang, Wen-Xing Sun, Na Kong, Min Wu, Hai-Ou Liu, Yan Liu, Zhi Li, Qing-Qing Cai, Yang Wang, Quan-Wei Wei, Peng-Cheng Lin, Yan Lin, Wei Xu, Cong-Jian Xu, Yi-Yuan Yuan, Shi-Min Zhao\",\"doi\":\"10.1093/procel/pwad065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility. Inadequate understanding of the ovulation drivers hinders PCOS intervention. Herein, we report that follicle stimulating hormone (FSH) controls follicular fluid (FF) glutamine levels to determine ovulation. Murine ovulation starts from FF-exposing granulosa cell (GC) apoptosis. FF glutamine, which decreases in pre-ovulation porcine FF, elevates in PCOS patients FF. High-glutamine chow to elevate FF glutamine inhibits mouse GC apoptosis and induces hormonal, metabolic, and morphologic PCOS traits. Mechanistically, follicle-development-driving FSH promotes GC glutamine synthesis to elevate FF glutamine, which maintain follicle wall integrity by inhibiting GC apoptosis through inactivating ASK1-JNK apoptotic pathway. FSH and glutamine inhibit the rapture of cultured murine follicles. Glutamine removal or ASK1-JNK pathway activation with metformin or AT-101 reversed PCOS traits in PCOS models that are induced with either glutamine or EsR1-KO. These suggest that glutamine, FSH, and ASK1-JNK pathway are targetable to alleviate PCOS.</p>\",\"PeriodicalId\":20790,\"journal\":{\"name\":\"Protein & Cell\",\"volume\":\" \",\"pages\":\"512-529\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein & Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/procel/pwad065\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwad065","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility. Inadequate understanding of the ovulation drivers hinders PCOS intervention. Herein, we report that follicle stimulating hormone (FSH) controls follicular fluid (FF) glutamine levels to determine ovulation. Murine ovulation starts from FF-exposing granulosa cell (GC) apoptosis. FF glutamine, which decreases in pre-ovulation porcine FF, elevates in PCOS patients FF. High-glutamine chow to elevate FF glutamine inhibits mouse GC apoptosis and induces hormonal, metabolic, and morphologic PCOS traits. Mechanistically, follicle-development-driving FSH promotes GC glutamine synthesis to elevate FF glutamine, which maintain follicle wall integrity by inhibiting GC apoptosis through inactivating ASK1-JNK apoptotic pathway. FSH and glutamine inhibit the rapture of cultured murine follicles. Glutamine removal or ASK1-JNK pathway activation with metformin or AT-101 reversed PCOS traits in PCOS models that are induced with either glutamine or EsR1-KO. These suggest that glutamine, FSH, and ASK1-JNK pathway are targetable to alleviate PCOS.
期刊介绍:
Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.