{"title":"液/液界面导电聚合物纳米复合材料的原位工程:从基本原理到技术意义的视角","authors":"Mini Mol Menamparambath*, ","doi":"10.1021/acsmaterialsau.3c00068","DOIUrl":null,"url":null,"abstract":"<p >The conducting polymers have continuously been hybridized with their counterparts to overcome the intrinsic functional limitations compared to the metallic or inorganic analogs. Remarkably, the liquid/liquid interface-assisted methods represent an efficient and facile route for developing fully tunable metamaterials for various applications. The spontaneous adsorption of nanostructures at a quasi-two-dimensional interface is energetically favorable due to the reduction in interfacial tension, interfacial area, and interfacial energy (Helmholtz free energy). This Perspective highlights the fundamentals of nanostructure adsorption leading to hierarchical architecture generation at the interface from an experimentalist’s point of view. Thereafter, the essential applications of the conducting polymer/nanocomposites synthesized at the interface emphasize the capability of the interface to tune functional materials. This Perspective also summarizes the future challenges and the use of the known fundamental aspects in overcoming the functional limitations of polymer/nanomaterial composites and also provides some future research directions.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 2","pages":"115–128"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00068","citationCount":"0","resultStr":"{\"title\":\"In Situ Engineering of Conducting Polymer Nanocomposites at Liquid/Liquid Interfaces: A Perspective on Fundamentals to Technological Significance\",\"authors\":\"Mini Mol Menamparambath*, \",\"doi\":\"10.1021/acsmaterialsau.3c00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The conducting polymers have continuously been hybridized with their counterparts to overcome the intrinsic functional limitations compared to the metallic or inorganic analogs. Remarkably, the liquid/liquid interface-assisted methods represent an efficient and facile route for developing fully tunable metamaterials for various applications. The spontaneous adsorption of nanostructures at a quasi-two-dimensional interface is energetically favorable due to the reduction in interfacial tension, interfacial area, and interfacial energy (Helmholtz free energy). This Perspective highlights the fundamentals of nanostructure adsorption leading to hierarchical architecture generation at the interface from an experimentalist’s point of view. Thereafter, the essential applications of the conducting polymer/nanocomposites synthesized at the interface emphasize the capability of the interface to tune functional materials. This Perspective also summarizes the future challenges and the use of the known fundamental aspects in overcoming the functional limitations of polymer/nanomaterial composites and also provides some future research directions.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"4 2\",\"pages\":\"115–128\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In Situ Engineering of Conducting Polymer Nanocomposites at Liquid/Liquid Interfaces: A Perspective on Fundamentals to Technological Significance
The conducting polymers have continuously been hybridized with their counterparts to overcome the intrinsic functional limitations compared to the metallic or inorganic analogs. Remarkably, the liquid/liquid interface-assisted methods represent an efficient and facile route for developing fully tunable metamaterials for various applications. The spontaneous adsorption of nanostructures at a quasi-two-dimensional interface is energetically favorable due to the reduction in interfacial tension, interfacial area, and interfacial energy (Helmholtz free energy). This Perspective highlights the fundamentals of nanostructure adsorption leading to hierarchical architecture generation at the interface from an experimentalist’s point of view. Thereafter, the essential applications of the conducting polymer/nanocomposites synthesized at the interface emphasize the capability of the interface to tune functional materials. This Perspective also summarizes the future challenges and the use of the known fundamental aspects in overcoming the functional limitations of polymer/nanomaterial composites and also provides some future research directions.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications