投资组合的共同因果条件风险中性 PDE

Alejandro Rodriguez Dominguez
{"title":"投资组合的共同因果条件风险中性 PDE","authors":"Alejandro Rodriguez Dominguez","doi":"arxiv-2401.00949","DOIUrl":null,"url":null,"abstract":"Portfolio's optimal drivers for diversification are common causes of the\nconstituents' correlations. A closed-form formula for the conditional\nprobability of the portfolio given its optimal common drivers is presented,\nwith each pair constituent-common driver joint distribution modelled by\nGaussian copulas. A conditional risk-neutral PDE is obtained for this\nconditional probability as a system of copulas' PDEs, allowing for dynamical\nrisk management of a portfolio as shown in the experiments. Implied conditional\nportfolio volatilities and implied weights are new risk metrics that can be\ndynamically monitored from the PDEs or obtained from their solution.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Portfolio's Common Causal Conditional Risk-neutral PDE\",\"authors\":\"Alejandro Rodriguez Dominguez\",\"doi\":\"arxiv-2401.00949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Portfolio's optimal drivers for diversification are common causes of the\\nconstituents' correlations. A closed-form formula for the conditional\\nprobability of the portfolio given its optimal common drivers is presented,\\nwith each pair constituent-common driver joint distribution modelled by\\nGaussian copulas. A conditional risk-neutral PDE is obtained for this\\nconditional probability as a system of copulas' PDEs, allowing for dynamical\\nrisk management of a portfolio as shown in the experiments. Implied conditional\\nportfolio volatilities and implied weights are new risk metrics that can be\\ndynamically monitored from the PDEs or obtained from their solution.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.00949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.00949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

投资组合多样化的最佳驱动因素是成分相关性的共同原因。在给出最优共同驱动因素的情况下,给出了投资组合条件概率的闭式公式,每一对成分-共同驱动因素的联合分布都用高斯共线来模拟。该条件概率的条件风险中性 PDE 是一个共线 PDE 系统,可用于投资组合的动态风险管理,如实验所示。隐含条件投资组合波动率和隐含权重是新的风险度量指标,可从 PDEs 中动态监测或从其求解中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Portfolio's Common Causal Conditional Risk-neutral PDE
Portfolio's optimal drivers for diversification are common causes of the constituents' correlations. A closed-form formula for the conditional probability of the portfolio given its optimal common drivers is presented, with each pair constituent-common driver joint distribution modelled by Gaussian copulas. A conditional risk-neutral PDE is obtained for this conditional probability as a system of copulas' PDEs, allowing for dynamical risk management of a portfolio as shown in the experiments. Implied conditional portfolio volatilities and implied weights are new risk metrics that can be dynamically monitored from the PDEs or obtained from their solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信