一维多速度非线性波方程的全局平稳解和渐近行为

IF 1 3区 数学 Q1 MATHEMATICS
Changhua Wei
{"title":"一维多速度非线性波方程的全局平稳解和渐近行为","authors":"Changhua Wei","doi":"10.1515/forum-2023-0139","DOIUrl":null,"url":null,"abstract":"We are interested in the one-dimensional nonlinear wave equations with multiple wave speeds by the energy method. By choosing different multipliers corresponding to the different wave speeds, we show that the one-dimensional nonlinear wave equations also have globally smooth solutions provided that the nonlinearities satisfy certain structural conditions when the initial data are small. Furthermore, we can prove that the global solutions will converge to the solutions of the linearized system based on the decay properties of the nonlinearities.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"22 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The globally smooth solutions and asymptotic behavior of the nonlinear wave equations in dimension one with multiple speeds\",\"authors\":\"Changhua Wei\",\"doi\":\"10.1515/forum-2023-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are interested in the one-dimensional nonlinear wave equations with multiple wave speeds by the energy method. By choosing different multipliers corresponding to the different wave speeds, we show that the one-dimensional nonlinear wave equations also have globally smooth solutions provided that the nonlinearities satisfy certain structural conditions when the initial data are small. Furthermore, we can prove that the global solutions will converge to the solutions of the linearized system based on the decay properties of the nonlinearities.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0139\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0139","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们感兴趣的是用能量法研究具有多种波速的一维非线性波方程。通过选择与不同波速相对应的不同乘数,我们证明了在初始数据较小时,只要非线性满足一定的结构条件,一维非线性波方程也有全局平稳解。此外,根据非线性的衰减特性,我们可以证明全局解将收敛于线性化系统的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The globally smooth solutions and asymptotic behavior of the nonlinear wave equations in dimension one with multiple speeds
We are interested in the one-dimensional nonlinear wave equations with multiple wave speeds by the energy method. By choosing different multipliers corresponding to the different wave speeds, we show that the one-dimensional nonlinear wave equations also have globally smooth solutions provided that the nonlinearities satisfy certain structural conditions when the initial data are small. Furthermore, we can prove that the global solutions will converge to the solutions of the linearized system based on the decay properties of the nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信