利用 GAM 因子模型提高 CVaR 投资组合优化性能

Davide Lauria, W. Brent Lindquist, Svetlozar T. Rachev
{"title":"利用 GAM 因子模型提高 CVaR 投资组合优化性能","authors":"Davide Lauria, W. Brent Lindquist, Svetlozar T. Rachev","doi":"arxiv-2401.00188","DOIUrl":null,"url":null,"abstract":"We propose a discrete-time econometric model that combines autoregressive\nfilters with factor regressions to predict stock returns for portfolio\noptimisation purposes. In particular, we test both robust linear regressions\nand general additive models on two different investment universes composed of\nthe Dow Jones Industrial Average and the Standard & Poor's 500 indexes, and we\ncompare the out-of-sample performances of mean-CVaR optimal portfolios over a\nhorizon of six years. The results show a substantial improvement in portfolio\nperformances when the factor model is estimated with general additive models.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing CVaR portfolio optimisation performance with GAM factor models\",\"authors\":\"Davide Lauria, W. Brent Lindquist, Svetlozar T. Rachev\",\"doi\":\"arxiv-2401.00188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a discrete-time econometric model that combines autoregressive\\nfilters with factor regressions to predict stock returns for portfolio\\noptimisation purposes. In particular, we test both robust linear regressions\\nand general additive models on two different investment universes composed of\\nthe Dow Jones Industrial Average and the Standard & Poor's 500 indexes, and we\\ncompare the out-of-sample performances of mean-CVaR optimal portfolios over a\\nhorizon of six years. The results show a substantial improvement in portfolio\\nperformances when the factor model is estimated with general additive models.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.00188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.00188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个离散时间计量经济模型,该模型将自回归滤波器与因子回归相结合,用于预测股票收益,以达到优化投资组合的目的。具体而言,我们在由道琼斯工业平均指数和标准普尔 500 指数组成的两个不同投资宇宙中测试了稳健线性回归和一般加法模型,并比较了均值-CVaR 最佳投资组合在六年时间内的样本外表现。结果表明,当使用一般加法模型估算因子模型时,投资组合的表现会有很大改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing CVaR portfolio optimisation performance with GAM factor models
We propose a discrete-time econometric model that combines autoregressive filters with factor regressions to predict stock returns for portfolio optimisation purposes. In particular, we test both robust linear regressions and general additive models on two different investment universes composed of the Dow Jones Industrial Average and the Standard & Poor's 500 indexes, and we compare the out-of-sample performances of mean-CVaR optimal portfolios over a horizon of six years. The results show a substantial improvement in portfolio performances when the factor model is estimated with general additive models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信