一类有界核 q 积分变换的 Donoho-Stark 和 Price 不确定性原理

IF 1 3区 数学 Q1 MATHEMATICS
Luis P. Castro, Rita C. Guerra
{"title":"一类有界核 q 积分变换的 Donoho-Stark 和 Price 不确定性原理","authors":"Luis P. Castro, Rita C. Guerra","doi":"10.1515/forum-2023-0244","DOIUrl":null,"url":null,"abstract":"We consider a very global <jats:italic>q</jats:italic>-integral transform, essentially characterized by having a bounded kernel and satisfying a set of natural and useful properties for the realization of applications. The main ambition of this work is to seek conditions that guarantee uncertainty principles of the Donoho–Stark type for that class of <jats:italic>q</jats:italic>-integral transforms. It should be noted that the global character of the <jats:italic>q</jats:italic>-integral transform in question allows one to immediately deduce corresponding Donoho–Stark uncertainty principles for <jats:italic>q</jats:italic>-integral operators that are its particular cases. These particular cases are very well-known operators, namely: a <jats:italic>q</jats:italic>-cosine-Fourier transform, a <jats:italic>q</jats:italic>-sine-Fourier transform, a <jats:italic>q</jats:italic>-Fourier transform, a <jats:italic>q</jats:italic>-Bessel–Fourier transform and a <jats:italic>q</jats:italic>-Dunkl transform. Moreover, generalizations of the local uncertainty principle of Price for the <jats:italic>q</jats:italic>-cosine-Fourier transform, <jats:italic>q</jats:italic>-sine-Fourier transform, <jats:italic>q</jats:italic>-Fourier transform, <jats:italic>q</jats:italic>-Bessel–Fourier transform and <jats:italic>q</jats:italic>-Dunkl transform are also obtained.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"51 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Donoho–Stark and Price uncertainty principles for a class of q-integral transforms with bounded kernels\",\"authors\":\"Luis P. Castro, Rita C. Guerra\",\"doi\":\"10.1515/forum-2023-0244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a very global <jats:italic>q</jats:italic>-integral transform, essentially characterized by having a bounded kernel and satisfying a set of natural and useful properties for the realization of applications. The main ambition of this work is to seek conditions that guarantee uncertainty principles of the Donoho–Stark type for that class of <jats:italic>q</jats:italic>-integral transforms. It should be noted that the global character of the <jats:italic>q</jats:italic>-integral transform in question allows one to immediately deduce corresponding Donoho–Stark uncertainty principles for <jats:italic>q</jats:italic>-integral operators that are its particular cases. These particular cases are very well-known operators, namely: a <jats:italic>q</jats:italic>-cosine-Fourier transform, a <jats:italic>q</jats:italic>-sine-Fourier transform, a <jats:italic>q</jats:italic>-Fourier transform, a <jats:italic>q</jats:italic>-Bessel–Fourier transform and a <jats:italic>q</jats:italic>-Dunkl transform. Moreover, generalizations of the local uncertainty principle of Price for the <jats:italic>q</jats:italic>-cosine-Fourier transform, <jats:italic>q</jats:italic>-sine-Fourier transform, <jats:italic>q</jats:italic>-Fourier transform, <jats:italic>q</jats:italic>-Bessel–Fourier transform and <jats:italic>q</jats:italic>-Dunkl transform are also obtained.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0244\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0244","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一种非常全局的 q 积分变换,其基本特征是具有有界内核,并满足实现应用的一系列自然而有用的特性。这项工作的主要目标是为该类 q 积分变换寻求保证多诺霍-斯塔克类型不确定性原理的条件。应该指出的是,相关 q 积分变换的全局特性允许我们立即为作为其特殊情况的 q 积分算子推导出相应的 Donoho-Stark 不确定性原理。这些特例是非常著名的算子,即:q-余弦-傅里叶变换、q-正弦-傅里叶变换、q-傅里叶变换、q-贝塞尔-傅里叶变换和 q-敦克尔变换。此外,还获得了普赖斯局部不确定性原理对 q-余弦-傅里叶变换、q-正弦-傅里叶变换、q-傅里叶变换、q-贝塞尔-傅里叶变换和 q-Dunkl 变换的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Donoho–Stark and Price uncertainty principles for a class of q-integral transforms with bounded kernels
We consider a very global q-integral transform, essentially characterized by having a bounded kernel and satisfying a set of natural and useful properties for the realization of applications. The main ambition of this work is to seek conditions that guarantee uncertainty principles of the Donoho–Stark type for that class of q-integral transforms. It should be noted that the global character of the q-integral transform in question allows one to immediately deduce corresponding Donoho–Stark uncertainty principles for q-integral operators that are its particular cases. These particular cases are very well-known operators, namely: a q-cosine-Fourier transform, a q-sine-Fourier transform, a q-Fourier transform, a q-Bessel–Fourier transform and a q-Dunkl transform. Moreover, generalizations of the local uncertainty principle of Price for the q-cosine-Fourier transform, q-sine-Fourier transform, q-Fourier transform, q-Bessel–Fourier transform and q-Dunkl transform are also obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信