Francisco Werley Cipriano Farias, Valdemar Rebelo Duarte, João da Cruz Payão Filho, Norbert Schell, Emad Maawad, Mélanie Bordas-Czaplicki, Fabio Machado Alves da Fonseca, Jonathan Cormier, Telmo Jorge Gomes dos Santos, João Pedro Oliveira
{"title":"基于电弧的定向能沉积镍铬合金 718:热处理对高温拉伸行为的影响","authors":"Francisco Werley Cipriano Farias, Valdemar Rebelo Duarte, João da Cruz Payão Filho, Norbert Schell, Emad Maawad, Mélanie Bordas-Czaplicki, Fabio Machado Alves da Fonseca, Jonathan Cormier, Telmo Jorge Gomes dos Santos, João Pedro Oliveira","doi":"10.1080/21663831.2023.2297734","DOIUrl":null,"url":null,"abstract":"This study evaluated the effect of dedicated heat treatments (1050°C, 1100°C, 1142°C, and 1185°C/2 h + double-aging) on the uniaxial tensile properties at elevated temperature (650°C) of Inconel® 7...Dedicated heat treatments developed for Inconel® 718 fabricated via arc plasma directed energy deposition enabled compliance with AMS 5662 requirements at elevated temperature (650°C).","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"121 2 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arc-based directed energy deposited Inconel 718: role of heat treatments on high-temperature tensile behavior\",\"authors\":\"Francisco Werley Cipriano Farias, Valdemar Rebelo Duarte, João da Cruz Payão Filho, Norbert Schell, Emad Maawad, Mélanie Bordas-Czaplicki, Fabio Machado Alves da Fonseca, Jonathan Cormier, Telmo Jorge Gomes dos Santos, João Pedro Oliveira\",\"doi\":\"10.1080/21663831.2023.2297734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluated the effect of dedicated heat treatments (1050°C, 1100°C, 1142°C, and 1185°C/2 h + double-aging) on the uniaxial tensile properties at elevated temperature (650°C) of Inconel® 7...Dedicated heat treatments developed for Inconel® 718 fabricated via arc plasma directed energy deposition enabled compliance with AMS 5662 requirements at elevated temperature (650°C).\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"121 2 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2023.2297734\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2297734","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Arc-based directed energy deposited Inconel 718: role of heat treatments on high-temperature tensile behavior
This study evaluated the effect of dedicated heat treatments (1050°C, 1100°C, 1142°C, and 1185°C/2 h + double-aging) on the uniaxial tensile properties at elevated temperature (650°C) of Inconel® 7...Dedicated heat treatments developed for Inconel® 718 fabricated via arc plasma directed energy deposition enabled compliance with AMS 5662 requirements at elevated temperature (650°C).
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.