{"title":"流行病学分析中时空和多维特征的可视化建模方法:应用COVID-19汇总数据集","authors":"Yu Dong, Christy Jie Liang, Yi Chen, Jie Hua","doi":"10.1007/s41095-023-0353-5","DOIUrl":null,"url":null,"abstract":"<p>The visual modeling method enables flexible interactions with rich graphical depictions of data and supports the exploration of the complexities of epidemiological analysis. However, most epidemiology visualizations do not support the combined analysis of objective factors that might influence the transmission situation, resulting in a lack of quantitative and qualitative evidence. To address this issue, we developed a portrait-based visual modeling method called <i>+msRNAer</i>. This method considers the spatiotemporal features of virus transmission patterns and multidimensional features of objective risk factors in communities, enabling portrait-based exploration and comparison in epidemiological analysis. We applied <i>+msRNAer</i> to aggregate COVID-19-related datasets in New South Wales, Australia, combining COVID-19 case number trends, geo-information, intervention events, and expert-supervised risk factors extracted from local government area-based censuses. We perfected the <i>+msRNAer</i> workflow with collaborative views and evaluated its feasibility, effectiveness, and usefulness through one user study and three subject-driven case studies. Positive feedback from experts indicates that <i>+msRNAer</i> provides a general understanding for analyzing comprehension that not only compares relationships between cases in time-varying and risk factors through portraits but also supports navigation in fundamental geographical, timeline, and other factor comparisons. By adopting interactions, experts discovered functional and practical implications for potential patterns of long-standing community factors regarding the vulnerability faced by the pandemic. Experts confirmed that <i>+msRNAer</i> is expected to deliver visual modeling benefits with spatiotemporal and multidimensional features in other epidemiological analysis scenarios.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"146 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A visual modeling method for spatiotemporal and multidimensional features in epidemiological analysis: Applied COVID-19 aggregated datasets\",\"authors\":\"Yu Dong, Christy Jie Liang, Yi Chen, Jie Hua\",\"doi\":\"10.1007/s41095-023-0353-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The visual modeling method enables flexible interactions with rich graphical depictions of data and supports the exploration of the complexities of epidemiological analysis. However, most epidemiology visualizations do not support the combined analysis of objective factors that might influence the transmission situation, resulting in a lack of quantitative and qualitative evidence. To address this issue, we developed a portrait-based visual modeling method called <i>+msRNAer</i>. This method considers the spatiotemporal features of virus transmission patterns and multidimensional features of objective risk factors in communities, enabling portrait-based exploration and comparison in epidemiological analysis. We applied <i>+msRNAer</i> to aggregate COVID-19-related datasets in New South Wales, Australia, combining COVID-19 case number trends, geo-information, intervention events, and expert-supervised risk factors extracted from local government area-based censuses. We perfected the <i>+msRNAer</i> workflow with collaborative views and evaluated its feasibility, effectiveness, and usefulness through one user study and three subject-driven case studies. Positive feedback from experts indicates that <i>+msRNAer</i> provides a general understanding for analyzing comprehension that not only compares relationships between cases in time-varying and risk factors through portraits but also supports navigation in fundamental geographical, timeline, and other factor comparisons. By adopting interactions, experts discovered functional and practical implications for potential patterns of long-standing community factors regarding the vulnerability faced by the pandemic. Experts confirmed that <i>+msRNAer</i> is expected to deliver visual modeling benefits with spatiotemporal and multidimensional features in other epidemiological analysis scenarios.\\n</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-023-0353-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-023-0353-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A visual modeling method for spatiotemporal and multidimensional features in epidemiological analysis: Applied COVID-19 aggregated datasets
The visual modeling method enables flexible interactions with rich graphical depictions of data and supports the exploration of the complexities of epidemiological analysis. However, most epidemiology visualizations do not support the combined analysis of objective factors that might influence the transmission situation, resulting in a lack of quantitative and qualitative evidence. To address this issue, we developed a portrait-based visual modeling method called +msRNAer. This method considers the spatiotemporal features of virus transmission patterns and multidimensional features of objective risk factors in communities, enabling portrait-based exploration and comparison in epidemiological analysis. We applied +msRNAer to aggregate COVID-19-related datasets in New South Wales, Australia, combining COVID-19 case number trends, geo-information, intervention events, and expert-supervised risk factors extracted from local government area-based censuses. We perfected the +msRNAer workflow with collaborative views and evaluated its feasibility, effectiveness, and usefulness through one user study and three subject-driven case studies. Positive feedback from experts indicates that +msRNAer provides a general understanding for analyzing comprehension that not only compares relationships between cases in time-varying and risk factors through portraits but also supports navigation in fundamental geographical, timeline, and other factor comparisons. By adopting interactions, experts discovered functional and practical implications for potential patterns of long-standing community factors regarding the vulnerability faced by the pandemic. Experts confirmed that +msRNAer is expected to deliver visual modeling benefits with spatiotemporal and multidimensional features in other epidemiological analysis scenarios.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.