{"title":"面部图像的分层矢量化","authors":"Qian Fu, Linlin Liu, Fei Hou, Ying He","doi":"10.1007/s41095-022-0314-4","DOIUrl":null,"url":null,"abstract":"<p>The explosive growth of social media means portrait editing and retouching are in high demand. While portraits are commonly captured and stored as raster images, editing raster images is non-trivial and requires the user to be highly skilled. Aiming at developing intuitive and easy-to-use portrait editing tools, we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation. The base layer consists of a set of sparse diffusion curves (DCs) which characterize salient geometric features and low-frequency colors, providing a means for semantic color transfer and facial expression editing. The middle level encodes specular highlights and shadows as large, editable Poisson regions (PRs) and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs. The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation. We train a deep generative model that can produce high-frequency residuals automatically. Thanks to the inherent meaning in vector primitives, editing portraits becomes easy and intuitive. In particular, our method supports color transfer, facial expression editing, highlight and shadow editing, and automatic retouching. To quantitatively evaluate the results, we extend the commonly used FLIP metric (which measures color and feature differences between two images) to consider illumination. The new metric, illumination-sensitive FLIP, can effectively capture salient changes in color transfer results, and is more consistent with human perception than FLIP and other quality measures for portrait images. We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks, such as retouching, light editing, color transfer, and expression editing.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"7 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical vectorization for facial images\",\"authors\":\"Qian Fu, Linlin Liu, Fei Hou, Ying He\",\"doi\":\"10.1007/s41095-022-0314-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The explosive growth of social media means portrait editing and retouching are in high demand. While portraits are commonly captured and stored as raster images, editing raster images is non-trivial and requires the user to be highly skilled. Aiming at developing intuitive and easy-to-use portrait editing tools, we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation. The base layer consists of a set of sparse diffusion curves (DCs) which characterize salient geometric features and low-frequency colors, providing a means for semantic color transfer and facial expression editing. The middle level encodes specular highlights and shadows as large, editable Poisson regions (PRs) and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs. The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation. We train a deep generative model that can produce high-frequency residuals automatically. Thanks to the inherent meaning in vector primitives, editing portraits becomes easy and intuitive. In particular, our method supports color transfer, facial expression editing, highlight and shadow editing, and automatic retouching. To quantitatively evaluate the results, we extend the commonly used FLIP metric (which measures color and feature differences between two images) to consider illumination. The new metric, illumination-sensitive FLIP, can effectively capture salient changes in color transfer results, and is more consistent with human perception than FLIP and other quality measures for portrait images. We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks, such as retouching, light editing, color transfer, and expression editing.\\n</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-022-0314-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-022-0314-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
The explosive growth of social media means portrait editing and retouching are in high demand. While portraits are commonly captured and stored as raster images, editing raster images is non-trivial and requires the user to be highly skilled. Aiming at developing intuitive and easy-to-use portrait editing tools, we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation. The base layer consists of a set of sparse diffusion curves (DCs) which characterize salient geometric features and low-frequency colors, providing a means for semantic color transfer and facial expression editing. The middle level encodes specular highlights and shadows as large, editable Poisson regions (PRs) and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs. The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation. We train a deep generative model that can produce high-frequency residuals automatically. Thanks to the inherent meaning in vector primitives, editing portraits becomes easy and intuitive. In particular, our method supports color transfer, facial expression editing, highlight and shadow editing, and automatic retouching. To quantitatively evaluate the results, we extend the commonly used FLIP metric (which measures color and feature differences between two images) to consider illumination. The new metric, illumination-sensitive FLIP, can effectively capture salient changes in color transfer results, and is more consistent with human perception than FLIP and other quality measures for portrait images. We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks, such as retouching, light editing, color transfer, and expression editing.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.