加权索波列夫空间上的锐索波列夫和亚当斯-特鲁丁格-莫泽嵌入及其应用

IF 1 3区 数学 Q1 MATHEMATICS
João Marcos do Ó, Guozhen Lu, Raoní Ponciano
{"title":"加权索波列夫空间上的锐索波列夫和亚当斯-特鲁丁格-莫泽嵌入及其应用","authors":"João Marcos do Ó, Guozhen Lu, Raoní Ponciano","doi":"10.1515/forum-2023-0292","DOIUrl":null,"url":null,"abstract":"We derive sharp Sobolev embeddings on a class of Sobolev spaces with potential weights without assuming any boundary conditions. Moreover, we consider the Adams-type inequalities for the borderline Sobolev embedding into the exponential class with a sharp constant. As applications, we prove that the associated elliptic equations with nonlinearities in both forms of polynomial and exponential growths admit nontrivial solutions.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Sobolev and Adams–Trudinger–Moser embeddings on weighted Sobolev spaces and their applications\",\"authors\":\"João Marcos do Ó, Guozhen Lu, Raoní Ponciano\",\"doi\":\"10.1515/forum-2023-0292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive sharp Sobolev embeddings on a class of Sobolev spaces with potential weights without assuming any boundary conditions. Moreover, we consider the Adams-type inequalities for the borderline Sobolev embedding into the exponential class with a sharp constant. As applications, we prove that the associated elliptic equations with nonlinearities in both forms of polynomial and exponential growths admit nontrivial solutions.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0292\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0292","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在不假设任何边界条件的情况下,推导出一类具有潜在权重的索波列夫空间的尖锐索波列夫嵌入。此外,我们还考虑了亚当斯型不等式,用于将边界索波列夫嵌入到具有尖锐常数的指数类中。作为应用,我们证明了具有多项式和指数增长两种形式的非线性的相关椭圆方程承认非难解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp Sobolev and Adams–Trudinger–Moser embeddings on weighted Sobolev spaces and their applications
We derive sharp Sobolev embeddings on a class of Sobolev spaces with potential weights without assuming any boundary conditions. Moreover, we consider the Adams-type inequalities for the borderline Sobolev embedding into the exponential class with a sharp constant. As applications, we prove that the associated elliptic equations with nonlinearities in both forms of polynomial and exponential growths admit nontrivial solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信