{"title":"有限域上二次距离集的商集","authors":"Alex Iosevich, Doowon Koh, Firdavs Rakhmonov","doi":"10.1515/forum-2023-0313","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0296.png\" /> <jats:tex-math>{\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0298.png\" /> <jats:tex-math>{\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. For each non-zero <jats:italic>r</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0298.png\" /> <jats:tex-math>{\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0186.png\" /> <jats:tex-math>{E\\subset\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we define <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0235.png\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> as the number of quadruples <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mi>E</m:mi> <m:mn>4</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0153.png\" /> <jats:tex-math>{(x,y,z,w)\\in E^{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>-</m:mo> <m:mi>w</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mi>r</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0277.png\" /> <jats:tex-math>{\\frac{Q(x-y)}{Q(z-w)}=r}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>Q</jats:italic> is a non-degenerate quadratic form in <jats:italic>d</jats:italic> variables over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0298.png\" /> <jats:tex-math>{\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>d</m:mi> </m:msubsup> <m:msubsup> <m:mi>α</m:mi> <m:mi>i</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0204.png\" /> <jats:tex-math>{Q(\\alpha)=\\sum_{i=1}^{d}\\alpha_{i}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>α</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>α</m:mi> <m:mi>d</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0244.png\" /> <jats:tex-math>{\\alpha=(\\alpha_{1},\\ldots,\\alpha_{d})\\in\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Pham (2022) recently used the machinery of group actions and proved that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0185.png\" /> <jats:tex-math>{E\\subset\\mathbb{F}_{q}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mrow> <m:mpadded width=\"+3.3pt\"> <m:mn>3</m:mn> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>mod</m:mi> <m:mo></m:mo> <m:mn> 4</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0377.png\" /> <jats:tex-math>{q\\equiv 3~{}(\\operatorname{mod}\\,4)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≥</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0431.png\" /> <jats:tex-math>{|E|\\geq Cq}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we have <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≥</m:mo> <m:mfrac> <m:mrow> <m:mi>c</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mn>4</m:mn> </m:msup> </m:mrow> <m:mi>q</m:mi> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0234.png\" /> <jats:tex-math>{W(r)\\geq\\frac{c|E|^{4}}{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any non-zero square number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0385.png\" /> <jats:tex-math>{r\\in\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a sufficiently large constant, <jats:italic>c</jats:italic> is some number between 0 and 1, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0433.png\" /> <jats:tex-math>{|E|}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cardinality of the set <jats:italic>E</jats:italic>. In this article, we improve and extend Pham’s result in two dimensions to arbitrary dimensions with general non-degenerate quadratic distances. As a corollary of our results, we also generalize the sharp results on the Falconer-type problem for the quotient set of distance set due to the first two authors and Parshall (2019). Furthermore, we provide improved constants for the size conditions of the underlying sets. The key new ingredient is to relate the estimate of the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0235.png\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to a quadratic homogeneous variety in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>d</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0169.png\" /> <jats:tex-math>{2d}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional vector space. This approach is fruitful because it allows us to take advantage of Gauss sums which are more handleable than the Kloosterman sums appearing in the standard distance-type problems.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quotient set of the quadratic distance set over finite fields\",\"authors\":\"Alex Iosevich, Doowon Koh, Firdavs Rakhmonov\",\"doi\":\"10.1515/forum-2023-0313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0296.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0298.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. For each non-zero <jats:italic>r</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0298.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0186.png\\\" /> <jats:tex-math>{E\\\\subset\\\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we define <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0235.png\\\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> as the number of quadruples <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mi>E</m:mi> <m:mn>4</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0153.png\\\" /> <jats:tex-math>{(x,y,z,w)\\\\in E^{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>-</m:mo> <m:mi>w</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mi>r</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0277.png\\\" /> <jats:tex-math>{\\\\frac{Q(x-y)}{Q(z-w)}=r}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>Q</jats:italic> is a non-degenerate quadratic form in <jats:italic>d</jats:italic> variables over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0298.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>d</m:mi> </m:msubsup> <m:msubsup> <m:mi>α</m:mi> <m:mi>i</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0204.png\\\" /> <jats:tex-math>{Q(\\\\alpha)=\\\\sum_{i=1}^{d}\\\\alpha_{i}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>α</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>α</m:mi> <m:mi>d</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0244.png\\\" /> <jats:tex-math>{\\\\alpha=(\\\\alpha_{1},\\\\ldots,\\\\alpha_{d})\\\\in\\\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Pham (2022) recently used the machinery of group actions and proved that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0185.png\\\" /> <jats:tex-math>{E\\\\subset\\\\mathbb{F}_{q}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mrow> <m:mpadded width=\\\"+3.3pt\\\"> <m:mn>3</m:mn> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>mod</m:mi> <m:mo></m:mo> <m:mn> 4</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0377.png\\\" /> <jats:tex-math>{q\\\\equiv 3~{}(\\\\operatorname{mod}\\\\,4)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≥</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0431.png\\\" /> <jats:tex-math>{|E|\\\\geq Cq}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we have <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≥</m:mo> <m:mfrac> <m:mrow> <m:mi>c</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mn>4</m:mn> </m:msup> </m:mrow> <m:mi>q</m:mi> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0234.png\\\" /> <jats:tex-math>{W(r)\\\\geq\\\\frac{c|E|^{4}}{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any non-zero square number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0385.png\\\" /> <jats:tex-math>{r\\\\in\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a sufficiently large constant, <jats:italic>c</jats:italic> is some number between 0 and 1, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0433.png\\\" /> <jats:tex-math>{|E|}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cardinality of the set <jats:italic>E</jats:italic>. In this article, we improve and extend Pham’s result in two dimensions to arbitrary dimensions with general non-degenerate quadratic distances. As a corollary of our results, we also generalize the sharp results on the Falconer-type problem for the quotient set of distance set due to the first two authors and Parshall (2019). Furthermore, we provide improved constants for the size conditions of the underlying sets. The key new ingredient is to relate the estimate of the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>W</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0235.png\\\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to a quadratic homogeneous variety in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>d</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0169.png\\\" /> <jats:tex-math>{2d}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional vector space. This approach is fruitful because it allows us to take advantage of Gauss sums which are more handleable than the Kloosterman sums appearing in the standard distance-type problems.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0313\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0313","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 𝔽 q d {\mathbb{F}_{q}^{d}} 是有限域 𝔽 q {\mathbb{F}_{q}} 上有 q 个元素的 d 维向量空间。对于𝔽 q {\mathbb{F}_{q}} 中的每一个非零 r 和 E ⊂ 𝔽 q d {E\subset\mathbb{F}_{q}^{d}} ,我们定义 W ( r ) {\mathbb{F}_{q}^{d} 为有限域上、有 q 个元素的 d 维向量空间。 我们定义 W ( r ) {W(r)} 为∈ E 4 {(x,y,z,w)\in E^{4}} 中 Q ( x - y ) Q ( z - w ) = r {frac{Q(x-y)}{Q(z-w)}=r} 的四元数 ( x , y , z , w ) ,其中 Q 是 𝔽 q {mathbb{F}_{q}} 上 d 个变量的非退化二次型。 .当 Q ( α ) = ∑ i = 1 d α i 2 {Q(\alpha)=\sum_{i=1}^{d}\alpha_{i}^{2}} 时,α = ( α 1 , ... , α d ) ∈ α 。, α d ) ∈ 𝔽 q d {\alpha=(\alpha_{1},\ldots,\alpha_{d})\in\mathbb{F}_{q}^{d}} Pham (2022) 最近使用群作用机制证明,如果 E ⊂ 𝔽 q 2 {E\subset\mathbb{F}_{q}^{2}} with q ≡ 3 ( mod 4 ) {q\equiv 3~{}(\operatorname{mod}\,4)} and | E |≥ C q {|E|\geq Cq} ,那么有 W ( r ) 。 对于任意非零平方数 r∈ 𝔽 q {r\in\mathbb{F}_{q}} ,其中 C 是一个足够大的平方数。 其中 C 是一个足够大的常数,c 是介于 0 和 1 之间的某个数,而 | E | {|E|} 表示集合 E 的万有引力。在本文中,我们将 Pham 在二维中的结果改进并扩展到具有一般非退化二次距离的任意维度。作为我们结果的一个推论,我们还概括了前两位作者和 Parshall (2019) 关于距离集的商集的 Falconer 型问题的尖锐结果。此外,我们还提供了基础集合大小条件的改进常数。新的关键要素是将 W ( r ) {W(r)} 的估计值与 2 d {2d} 维向量空间中的二次同素异形体联系起来。这种方法富有成果,因为它允许我们利用高斯和,而高斯和比标准距离类型问题中出现的克洛斯特曼和更容易处理。
The quotient set of the quadratic distance set over finite fields
Let 𝔽qd{\mathbb{F}_{q}^{d}} be the d-dimensional vector space over the finite field 𝔽q{\mathbb{F}_{q}} with q elements. For each non-zero r in 𝔽q{\mathbb{F}_{q}} and E⊂𝔽qd{E\subset\mathbb{F}_{q}^{d}}, we define W(r){W(r)} as the number of quadruples (x,y,z,w)∈E4{(x,y,z,w)\in E^{4}} such that Q(x-y)Q(z-w)=r{\frac{Q(x-y)}{Q(z-w)}=r}, where Q is a non-degenerate quadratic form in d variables over 𝔽q{\mathbb{F}_{q}}. When Q(α)=∑i=1dαi2{Q(\alpha)=\sum_{i=1}^{d}\alpha_{i}^{2}} with α=(α1,…,αd)∈𝔽qd{\alpha=(\alpha_{1},\ldots,\alpha_{d})\in\mathbb{F}_{q}^{d}}, Pham (2022) recently used the machinery of group actions and proved that if E⊂𝔽q2{E\subset\mathbb{F}_{q}^{2}} with q≡3(mod 4){q\equiv 3~{}(\operatorname{mod}\,4)} and |E|≥Cq{|E|\geq Cq}, then we have W(r)≥c|E|4q{W(r)\geq\frac{c|E|^{4}}{q}} for any non-zero square number r∈𝔽q{r\in\mathbb{F}_{q}}, where C is a sufficiently large constant, c is some number between 0 and 1, and |E|{|E|} denotes the cardinality of the set E. In this article, we improve and extend Pham’s result in two dimensions to arbitrary dimensions with general non-degenerate quadratic distances. As a corollary of our results, we also generalize the sharp results on the Falconer-type problem for the quotient set of distance set due to the first two authors and Parshall (2019). Furthermore, we provide improved constants for the size conditions of the underlying sets. The key new ingredient is to relate the estimate of the W(r){W(r)} to a quadratic homogeneous variety in 2d{2d}-dimensional vector space. This approach is fruitful because it allows us to take advantage of Gauss sums which are more handleable than the Kloosterman sums appearing in the standard distance-type problems.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.