有限域上二次距离集的商集

IF 1 3区 数学 Q1 MATHEMATICS
Alex Iosevich, Doowon Koh, Firdavs Rakhmonov
{"title":"有限域上二次距离集的商集","authors":"Alex Iosevich, Doowon Koh, Firdavs Rakhmonov","doi":"10.1515/forum-2023-0313","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0296.png\" /> <jats:tex-math>{\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0298.png\" /> <jats:tex-math>{\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. For each non-zero <jats:italic>r</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0298.png\" /> <jats:tex-math>{\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0186.png\" /> <jats:tex-math>{E\\subset\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we define <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>W</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0235.png\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> as the number of quadruples <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mi>E</m:mi> <m:mn>4</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0153.png\" /> <jats:tex-math>{(x,y,z,w)\\in E^{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>-</m:mo> <m:mi>w</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mi>r</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0277.png\" /> <jats:tex-math>{\\frac{Q(x-y)}{Q(z-w)}=r}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>Q</jats:italic> is a non-degenerate quadratic form in <jats:italic>d</jats:italic> variables over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0298.png\" /> <jats:tex-math>{\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mo largeop=\"true\" symmetric=\"true\">∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>d</m:mi> </m:msubsup> <m:msubsup> <m:mi>α</m:mi> <m:mi>i</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0204.png\" /> <jats:tex-math>{Q(\\alpha)=\\sum_{i=1}^{d}\\alpha_{i}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>α</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>α</m:mi> <m:mi>d</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0244.png\" /> <jats:tex-math>{\\alpha=(\\alpha_{1},\\ldots,\\alpha_{d})\\in\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Pham (2022) recently used the machinery of group actions and proved that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0185.png\" /> <jats:tex-math>{E\\subset\\mathbb{F}_{q}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mrow> <m:mpadded width=\"+3.3pt\"> <m:mn>3</m:mn> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>mod</m:mi> <m:mo>⁡</m:mo> <m:mn> 4</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0377.png\" /> <jats:tex-math>{q\\equiv 3~{}(\\operatorname{mod}\\,4)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≥</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mi>q</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0431.png\" /> <jats:tex-math>{|E|\\geq Cq}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we have <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>W</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≥</m:mo> <m:mfrac> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mn>4</m:mn> </m:msup> </m:mrow> <m:mi>q</m:mi> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0234.png\" /> <jats:tex-math>{W(r)\\geq\\frac{c|E|^{4}}{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any non-zero square number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0385.png\" /> <jats:tex-math>{r\\in\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a sufficiently large constant, <jats:italic>c</jats:italic> is some number between 0 and 1, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0433.png\" /> <jats:tex-math>{|E|}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cardinality of the set <jats:italic>E</jats:italic>. In this article, we improve and extend Pham’s result in two dimensions to arbitrary dimensions with general non-degenerate quadratic distances. As a corollary of our results, we also generalize the sharp results on the Falconer-type problem for the quotient set of distance set due to the first two authors and Parshall (2019). Furthermore, we provide improved constants for the size conditions of the underlying sets. The key new ingredient is to relate the estimate of the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>W</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0235.png\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to a quadratic homogeneous variety in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>d</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0313_eq_0169.png\" /> <jats:tex-math>{2d}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional vector space. This approach is fruitful because it allows us to take advantage of Gauss sums which are more handleable than the Kloosterman sums appearing in the standard distance-type problems.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quotient set of the quadratic distance set over finite fields\",\"authors\":\"Alex Iosevich, Doowon Koh, Firdavs Rakhmonov\",\"doi\":\"10.1515/forum-2023-0313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0296.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0298.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. For each non-zero <jats:italic>r</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0298.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0186.png\\\" /> <jats:tex-math>{E\\\\subset\\\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we define <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>W</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0235.png\\\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> as the number of quadruples <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mi>E</m:mi> <m:mn>4</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0153.png\\\" /> <jats:tex-math>{(x,y,z,w)\\\\in E^{4}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>-</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>-</m:mo> <m:mi>w</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mi>r</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0277.png\\\" /> <jats:tex-math>{\\\\frac{Q(x-y)}{Q(z-w)}=r}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>Q</jats:italic> is a non-degenerate quadratic form in <jats:italic>d</jats:italic> variables over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0298.png\\\" /> <jats:tex-math>{\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>d</m:mi> </m:msubsup> <m:msubsup> <m:mi>α</m:mi> <m:mi>i</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0204.png\\\" /> <jats:tex-math>{Q(\\\\alpha)=\\\\sum_{i=1}^{d}\\\\alpha_{i}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>α</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>α</m:mi> <m:mi>d</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mi>d</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0244.png\\\" /> <jats:tex-math>{\\\\alpha=(\\\\alpha_{1},\\\\ldots,\\\\alpha_{d})\\\\in\\\\mathbb{F}_{q}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Pham (2022) recently used the machinery of group actions and proved that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>E</m:mi> <m:mo>⊂</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0185.png\\\" /> <jats:tex-math>{E\\\\subset\\\\mathbb{F}_{q}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mrow> <m:mpadded width=\\\"+3.3pt\\\"> <m:mn>3</m:mn> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>mod</m:mi> <m:mo>⁡</m:mo> <m:mn> 4</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0377.png\\\" /> <jats:tex-math>{q\\\\equiv 3~{}(\\\\operatorname{mod}\\\\,4)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≥</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mi>q</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0431.png\\\" /> <jats:tex-math>{|E|\\\\geq Cq}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we have <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>W</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≥</m:mo> <m:mfrac> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mn>4</m:mn> </m:msup> </m:mrow> <m:mi>q</m:mi> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0234.png\\\" /> <jats:tex-math>{W(r)\\\\geq\\\\frac{c|E|^{4}}{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any non-zero square number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0385.png\\\" /> <jats:tex-math>{r\\\\in\\\\mathbb{F}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a sufficiently large constant, <jats:italic>c</jats:italic> is some number between 0 and 1, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0433.png\\\" /> <jats:tex-math>{|E|}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cardinality of the set <jats:italic>E</jats:italic>. In this article, we improve and extend Pham’s result in two dimensions to arbitrary dimensions with general non-degenerate quadratic distances. As a corollary of our results, we also generalize the sharp results on the Falconer-type problem for the quotient set of distance set due to the first two authors and Parshall (2019). Furthermore, we provide improved constants for the size conditions of the underlying sets. The key new ingredient is to relate the estimate of the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>W</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0235.png\\\" /> <jats:tex-math>{W(r)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to a quadratic homogeneous variety in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>d</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0313_eq_0169.png\\\" /> <jats:tex-math>{2d}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional vector space. This approach is fruitful because it allows us to take advantage of Gauss sums which are more handleable than the Kloosterman sums appearing in the standard distance-type problems.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0313\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0313","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 𝔽 q d {\mathbb{F}_{q}^{d}} 是有限域 𝔽 q {\mathbb{F}_{q}} 上有 q 个元素的 d 维向量空间。对于𝔽 q {\mathbb{F}_{q}} 中的每一个非零 r 和 E ⊂ 𝔽 q d {E\subset\mathbb{F}_{q}^{d}} ,我们定义 W ( r ) {\mathbb{F}_{q}^{d} 为有限域上、有 q 个元素的 d 维向量空间。 我们定义 W ( r ) {W(r)} 为∈ E 4 {(x,y,z,w)\in E^{4}} 中 Q ( x - y ) Q ( z - w ) = r {frac{Q(x-y)}{Q(z-w)}=r} 的四元数 ( x , y , z , w ) ,其中 Q 是 𝔽 q {mathbb{F}_{q}} 上 d 个变量的非退化二次型。 .当 Q ( α ) = ∑ i = 1 d α i 2 {Q(\alpha)=\sum_{i=1}^{d}\alpha_{i}^{2}} 时,α = ( α 1 , ... , α d ) ∈ α 。, α d ) ∈ 𝔽 q d {\alpha=(\alpha_{1},\ldots,\alpha_{d})\in\mathbb{F}_{q}^{d}} Pham (2022) 最近使用群作用机制证明,如果 E ⊂ 𝔽 q 2 {E\subset\mathbb{F}_{q}^{2}} with q ≡ 3 ( mod 4 ) {q\equiv 3~{}(\operatorname{mod}\,4)} and | E |≥ C q {|E|\geq Cq} ,那么有 W ( r ) 。 对于任意非零平方数 r∈ 𝔽 q {r\in\mathbb{F}_{q}} ,其中 C 是一个足够大的平方数。 其中 C 是一个足够大的常数,c 是介于 0 和 1 之间的某个数,而 | E | {|E|} 表示集合 E 的万有引力。在本文中,我们将 Pham 在二维中的结果改进并扩展到具有一般非退化二次距离的任意维度。作为我们结果的一个推论,我们还概括了前两位作者和 Parshall (2019) 关于距离集的商集的 Falconer 型问题的尖锐结果。此外,我们还提供了基础集合大小条件的改进常数。新的关键要素是将 W ( r ) {W(r)} 的估计值与 2 d {2d} 维向量空间中的二次同素异形体联系起来。这种方法富有成果,因为它允许我们利用高斯和,而高斯和比标准距离类型问题中出现的克洛斯特曼和更容易处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quotient set of the quadratic distance set over finite fields
Let 𝔽 q d {\mathbb{F}_{q}^{d}} be the d-dimensional vector space over the finite field 𝔽 q {\mathbb{F}_{q}} with q elements. For each non-zero r in 𝔽 q {\mathbb{F}_{q}} and E 𝔽 q d {E\subset\mathbb{F}_{q}^{d}} , we define W ( r ) {W(r)} as the number of quadruples ( x , y , z , w ) E 4 {(x,y,z,w)\in E^{4}} such that Q ( x - y ) Q ( z - w ) = r {\frac{Q(x-y)}{Q(z-w)}=r} , where Q is a non-degenerate quadratic form in d variables over 𝔽 q {\mathbb{F}_{q}} . When Q ( α ) = i = 1 d α i 2 {Q(\alpha)=\sum_{i=1}^{d}\alpha_{i}^{2}} with α = ( α 1 , , α d ) 𝔽 q d {\alpha=(\alpha_{1},\ldots,\alpha_{d})\in\mathbb{F}_{q}^{d}} , Pham (2022) recently used the machinery of group actions and proved that if E 𝔽 q 2 {E\subset\mathbb{F}_{q}^{2}} with q 3 ( mod 4 ) {q\equiv 3~{}(\operatorname{mod}\,4)} and | E | C q {|E|\geq Cq} , then we have W ( r ) c | E | 4 q {W(r)\geq\frac{c|E|^{4}}{q}} for any non-zero square number r 𝔽 q {r\in\mathbb{F}_{q}} , where C is a sufficiently large constant, c is some number between 0 and 1, and | E | {|E|} denotes the cardinality of the set E. In this article, we improve and extend Pham’s result in two dimensions to arbitrary dimensions with general non-degenerate quadratic distances. As a corollary of our results, we also generalize the sharp results on the Falconer-type problem for the quotient set of distance set due to the first two authors and Parshall (2019). Furthermore, we provide improved constants for the size conditions of the underlying sets. The key new ingredient is to relate the estimate of the W ( r ) {W(r)} to a quadratic homogeneous variety in 2 d {2d} -dimensional vector space. This approach is fruitful because it allows us to take advantage of Gauss sums which are more handleable than the Kloosterman sums appearing in the standard distance-type problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信