{"title":"关于后量子谢弗多项式序列的说明","authors":"Subuhi Khan, Mehnaz Haneef","doi":"10.1515/forum-2023-0004","DOIUrl":null,"url":null,"abstract":"In this article, the post quantum analogue of Sheffer polynomial sequences is introduced using concepts of post quantum calculus. The series representation, recurrence relations, determinant expression and certain other properties of this class are established. Further, the 2D-post quantum-Sheffer polynomials are introduced via generating function and their properties are established. Certain identities and integral representations for the 2D-post quantum-Hermite polynomials, 2D-post quantum-Laguerre polynomials, and 2D-post quantum-Bessel polynomials are also considered.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the post quantum-Sheffer polynomial sequences\",\"authors\":\"Subuhi Khan, Mehnaz Haneef\",\"doi\":\"10.1515/forum-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the post quantum analogue of Sheffer polynomial sequences is introduced using concepts of post quantum calculus. The series representation, recurrence relations, determinant expression and certain other properties of this class are established. Further, the 2D-post quantum-Sheffer polynomials are introduced via generating function and their properties are established. Certain identities and integral representations for the 2D-post quantum-Hermite polynomials, 2D-post quantum-Laguerre polynomials, and 2D-post quantum-Bessel polynomials are also considered.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A note on the post quantum-Sheffer polynomial sequences
In this article, the post quantum analogue of Sheffer polynomial sequences is introduced using concepts of post quantum calculus. The series representation, recurrence relations, determinant expression and certain other properties of this class are established. Further, the 2D-post quantum-Sheffer polynomials are introduced via generating function and their properties are established. Certain identities and integral representations for the 2D-post quantum-Hermite polynomials, 2D-post quantum-Laguerre polynomials, and 2D-post quantum-Bessel polynomials are also considered.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.