{"title":"C* 模块的有限逼近特性 III","authors":"Massoud Amini","doi":"10.1515/forum-2023-0283","DOIUrl":null,"url":null,"abstract":"We introduce and study a notion of module nuclear dimension for a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0204.png\" /> <jats:tex-math>\\mathrm{C}^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra <jats:italic>A</jats:italic> which is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0204.png\" /> <jats:tex-math>\\mathrm{C}^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module over another <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0204.png\" /> <jats:tex-math>\\mathrm{C}^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0639.png\" /> <jats:tex-math>{\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with compatible actions. We show that the module nuclear dimension of <jats:italic>A</jats:italic> is zero if <jats:italic>A</jats:italic> is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0639.png\" /> <jats:tex-math>{\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-NF. The converse is shown to hold when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0639.png\" /> <jats:tex-math>{\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>C</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0344.png\" /> <jats:tex-math>{C(X)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra with simple fibers, with <jats:italic>X</jats:italic> compact and totally disconnected. We also introduce a notion of module decomposition rank, and show that when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0639.png\" /> <jats:tex-math>{\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unital and simple, if the module decomposition rank of <jats:italic>A</jats:italic> is finite then <jats:italic>A</jats:italic> is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0639.png\" /> <jats:tex-math>{\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-QD. We study the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒯</m:mi> <m:mi>𝔄</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0625.png\" /> <jats:tex-math>{\\mathcal{T}_{\\mathfrak{A}}(A)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0639.png\" /> <jats:tex-math>{\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-valued module traces on <jats:italic>A</jats:italic> and relate the Cuntz semigroup of <jats:italic>A</jats:italic> with lower semicontinuous affine functions on the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒯</m:mi> <m:mi>𝔄</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0283_eq_0625.png\" /> <jats:tex-math>{\\mathcal{T}_{\\mathfrak{A}}(A)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Along the way, we also prove a module Choi–Effros lifting theorem. We give estimates of the module nuclear dimension for a class of examples.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite approximation properties of C*-modules III\",\"authors\":\"Massoud Amini\",\"doi\":\"10.1515/forum-2023-0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a notion of module nuclear dimension for a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0204.png\\\" /> <jats:tex-math>\\\\mathrm{C}^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra <jats:italic>A</jats:italic> which is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0204.png\\\" /> <jats:tex-math>\\\\mathrm{C}^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module over another <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"normal\\\">C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0204.png\\\" /> <jats:tex-math>\\\\mathrm{C}^{*}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0639.png\\\" /> <jats:tex-math>{\\\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with compatible actions. We show that the module nuclear dimension of <jats:italic>A</jats:italic> is zero if <jats:italic>A</jats:italic> is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0639.png\\\" /> <jats:tex-math>{\\\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-NF. The converse is shown to hold when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0639.png\\\" /> <jats:tex-math>{\\\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>C</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>X</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0344.png\\\" /> <jats:tex-math>{C(X)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra with simple fibers, with <jats:italic>X</jats:italic> compact and totally disconnected. We also introduce a notion of module decomposition rank, and show that when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0639.png\\\" /> <jats:tex-math>{\\\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is unital and simple, if the module decomposition rank of <jats:italic>A</jats:italic> is finite then <jats:italic>A</jats:italic> is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0639.png\\\" /> <jats:tex-math>{\\\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-QD. We study the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">𝒯</m:mi> <m:mi>𝔄</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0625.png\\\" /> <jats:tex-math>{\\\\mathcal{T}_{\\\\mathfrak{A}}(A)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔄</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0639.png\\\" /> <jats:tex-math>{\\\\mathfrak{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-valued module traces on <jats:italic>A</jats:italic> and relate the Cuntz semigroup of <jats:italic>A</jats:italic> with lower semicontinuous affine functions on the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">𝒯</m:mi> <m:mi>𝔄</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0283_eq_0625.png\\\" /> <jats:tex-math>{\\\\mathcal{T}_{\\\\mathfrak{A}}(A)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Along the way, we also prove a module Choi–Effros lifting theorem. We give estimates of the module nuclear dimension for a class of examples.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们引入并研究了 C * \mathrm{C}^{*} -代数 A 的模核维度概念。 -代数 A 的模块核维度概念。 上的另一个 C * \mathrm{C}^{*} -模块 -代数𝔄 {\mathfrak{A}} 的兼容作用。我们证明,如果 A 是 \ {mathfrak{A}} ,那么 A 的模块核维度为零。 -NF。当𝔄 {\mathfrak{A}} 是具有简单纤维的 C ( X ) {C(X)}-代数,且 X 紧凑且完全断开时,反之成立。我们还引入了一个模块分解秩的概念,并证明当 𝔄 {\mathfrak{A}} 是单价且简单时,如果 A 的模块分解秩是有限的,那么 A 是 𝔄 {\mathfrak{A}} -QD。 -QD。我们研究𝔄 {\mathcal{T}_{mathfrak{A}}(A)} 的𝔄 {\mathfrak{A}} 的集合 𝒯 ( A ) {\mathcal{T}_{mathfrak{A}}(A)} 。 -A 上的有值模量迹,并将 A 的 Cuntz 半群与集合 𝒯 ( A ) {\mathcal{T}_{\mathfrak{A}}(A)} 上的下半连续仿射函数联系起来。同时,我们还证明了一个模块崔-埃夫罗斯提升定理。我们给出了一类例子的模块核维度估计值。
We introduce and study a notion of module nuclear dimension for a C*\mathrm{C}^{*}-algebra A which is a C*\mathrm{C}^{*}-module over another C*\mathrm{C}^{*}-algebra 𝔄{\mathfrak{A}} with compatible actions. We show that the module nuclear dimension of A is zero if A is 𝔄{\mathfrak{A}}-NF. The converse is shown to hold when 𝔄{\mathfrak{A}} is a C(X){C(X)}-algebra with simple fibers, with X compact and totally disconnected. We also introduce a notion of module decomposition rank, and show that when 𝔄{\mathfrak{A}} is unital and simple, if the module decomposition rank of A is finite then A is 𝔄{\mathfrak{A}}-QD. We study the set 𝒯𝔄(A){\mathcal{T}_{\mathfrak{A}}(A)} of 𝔄{\mathfrak{A}}-valued module traces on A and relate the Cuntz semigroup of A with lower semicontinuous affine functions on the set 𝒯𝔄(A){\mathcal{T}_{\mathfrak{A}}(A)}. Along the way, we also prove a module Choi–Effros lifting theorem. We give estimates of the module nuclear dimension for a class of examples.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.