伊诺克斯的同位对猜想及其他

IF 1 3区 数学 Q1 MATHEMATICS
Silvana Bazzoni, Jan Šaroch
{"title":"伊诺克斯的同位对猜想及其他","authors":"Silvana Bazzoni, Jan Šaroch","doi":"10.1515/forum-2023-0220","DOIUrl":null,"url":null,"abstract":"Enochs’ conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0359.png\" /> <jats:tex-math>{\\operatorname{Filt}(\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0332.png\" /> <jats:tex-math>{\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> consists of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0211.png\" /> <jats:tex-math>{\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules for some fixed <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>&lt;</m:mo> <m:mi>ω</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0475.png\" /> <jats:tex-math>{n&lt;\\omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, this applies to the left-hand class of any cotorsion pair generated by a class of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0211.png\" /> <jats:tex-math>{\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules. Moreover, we also show that it is consistent with ZFC that Enochs’ conjecture holds for all classes of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0359.png\" /> <jats:tex-math>{\\operatorname{Filt}(\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0332.png\" /> <jats:tex-math>{\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs’ conjecture holds (possibly under some additional set-theoretic assumption).","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enochs’ conjecture for cotorsion pairs and more\",\"authors\":\"Silvana Bazzoni, Jan Šaroch\",\"doi\":\"10.1515/forum-2023-0220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enochs’ conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0359.png\\\" /> <jats:tex-math>{\\\\operatorname{Filt}(\\\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0332.png\\\" /> <jats:tex-math>{\\\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> consists of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0211.png\\\" /> <jats:tex-math>{\\\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules for some fixed <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>&lt;</m:mo> <m:mi>ω</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0475.png\\\" /> <jats:tex-math>{n&lt;\\\\omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, this applies to the left-hand class of any cotorsion pair generated by a class of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0211.png\\\" /> <jats:tex-math>{\\\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules. Moreover, we also show that it is consistent with ZFC that Enochs’ conjecture holds for all classes of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0359.png\\\" /> <jats:tex-math>{\\\\operatorname{Filt}(\\\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0332.png\\\" /> <jats:tex-math>{\\\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs’ conjecture holds (possibly under some additional set-theoretic assumption).\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0220\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

伊诺克斯猜想断言,(任何环上的)模块的每个覆盖类在直接极限下都是封闭的。尽管该猜想的各种特例都已得到验证,但该猜想的全部普遍性仍未解决。本文将证明类 Filt ( 𝒮 ) {\operatorname{Filt}(\mathcal{S})} 的猜想。 其中𝒮 {\mathcal{S}} 由 ℵ n {\aleph_{n}} 组成。 -的模块组成。特别是,这适用于由类ℵ n {\aleph_{n}} -呈现模块生成的任何扭转对的左手类。 -呈现的模块。此外,我们还证明了伊诺克斯猜想对于所有形式为 Filt ( 𝒮 ) {\operatorname{Filt}(\mathcal{S})} 的类都成立,这与 ZFC 是一致的。 其中 𝒮 {\mathcal{S}} 是一组模块。这样一来,我们就没有一个明确的覆盖类例子可以证明伊诺克斯猜想成立了(可能需要一些额外的集合论假设)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enochs’ conjecture for cotorsion pairs and more
Enochs’ conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes Filt ( 𝒮 ) {\operatorname{Filt}(\mathcal{S})} , where 𝒮 {\mathcal{S}} consists of n {\aleph_{n}} -presented modules for some fixed n < ω {n<\omega} . In particular, this applies to the left-hand class of any cotorsion pair generated by a class of n {\aleph_{n}} -presented modules. Moreover, we also show that it is consistent with ZFC that Enochs’ conjecture holds for all classes of the form Filt ( 𝒮 ) {\operatorname{Filt}(\mathcal{S})} , where 𝒮 {\mathcal{S}} is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs’ conjecture holds (possibly under some additional set-theoretic assumption).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信