{"title":"伊诺克斯的同位对猜想及其他","authors":"Silvana Bazzoni, Jan Šaroch","doi":"10.1515/forum-2023-0220","DOIUrl":null,"url":null,"abstract":"Enochs’ conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0359.png\" /> <jats:tex-math>{\\operatorname{Filt}(\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0332.png\" /> <jats:tex-math>{\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> consists of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0211.png\" /> <jats:tex-math>{\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules for some fixed <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo><</m:mo> <m:mi>ω</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0475.png\" /> <jats:tex-math>{n<\\omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, this applies to the left-hand class of any cotorsion pair generated by a class of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0211.png\" /> <jats:tex-math>{\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules. Moreover, we also show that it is consistent with ZFC that Enochs’ conjecture holds for all classes of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0359.png\" /> <jats:tex-math>{\\operatorname{Filt}(\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0220_eq_0332.png\" /> <jats:tex-math>{\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs’ conjecture holds (possibly under some additional set-theoretic assumption).","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enochs’ conjecture for cotorsion pairs and more\",\"authors\":\"Silvana Bazzoni, Jan Šaroch\",\"doi\":\"10.1515/forum-2023-0220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enochs’ conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0359.png\\\" /> <jats:tex-math>{\\\\operatorname{Filt}(\\\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0332.png\\\" /> <jats:tex-math>{\\\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> consists of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0211.png\\\" /> <jats:tex-math>{\\\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules for some fixed <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo><</m:mo> <m:mi>ω</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0475.png\\\" /> <jats:tex-math>{n<\\\\omega}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, this applies to the left-hand class of any cotorsion pair generated by a class of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℵ</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0211.png\\\" /> <jats:tex-math>{\\\\aleph_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-presented modules. Moreover, we also show that it is consistent with ZFC that Enochs’ conjecture holds for all classes of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Filt</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0359.png\\\" /> <jats:tex-math>{\\\\operatorname{Filt}(\\\\mathcal{S})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0220_eq_0332.png\\\" /> <jats:tex-math>{\\\\mathcal{S}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs’ conjecture holds (possibly under some additional set-theoretic assumption).\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0220\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enochs’ conjecture asserts that each covering class of modules (over any ring) has to be closed under direct limits. Although various special cases of the conjecture have been verified, the conjecture remains open in its full generality. In this paper, we prove the conjecture for the classes Filt(𝒮){\operatorname{Filt}(\mathcal{S})}, where 𝒮{\mathcal{S}} consists of ℵn{\aleph_{n}}-presented modules for some fixed n<ω{n<\omega}. In particular, this applies to the left-hand class of any cotorsion pair generated by a class of ℵn{\aleph_{n}}-presented modules. Moreover, we also show that it is consistent with ZFC that Enochs’ conjecture holds for all classes of the form Filt(𝒮){\operatorname{Filt}(\mathcal{S})}, where 𝒮{\mathcal{S}} is a set of modules. This leaves us with no explicit example of a covering class where we cannot prove that Enochs’ conjecture holds (possibly under some additional set-theoretic assumption).
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.