Jiaxun Yang , Feng Zhen , Qiyu Wang , Quanguo Zhang , Hongru Li , Lingling Zhang , Bin Qu
{"title":"基于多通道结构的低曲度玉米秸秆生物炭/VS4 的高性能锂离子电池高导电性电极研究","authors":"Jiaxun Yang , Feng Zhen , Qiyu Wang , Quanguo Zhang , Hongru Li , Lingling Zhang , Bin Qu","doi":"10.1016/j.indcrop.2023.117995","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>It is an effective measure to achieve the application agricultural waste and the development of sustainable energy by effectively utilizing the corn straw with natural multichannel structure in electrochemical energy storage devices. Corn straw biochar as a sustainable and environmentally friendly form of clean energy, serves as a carbon-based material in </span>electrode of lithium-ion batteries. The natural multi-channels and </span>sieve tube structure is the foundation for the electrode with low tortuosity. Within the traditional carbon materials, these characteristics are not commonly presented. In this study, a strategy is proposed to boost the performance of the electrode by devising and modifying its structure. The multichannel and porous structure within the electrodes is achieved by leveraging the natural structure of corn straw. This unique structure can bring low tortuosity in the electrode, thereby facilitating the construction of the direct ions transfer channels and continuous electrons pathways. Moreover, the inherent nitrogenous feature of biochar result in enhanced surface polarity, enabling the electrode material to trap the polar polysulfides efficiently. Additionally, the multichannel and porous structure of electrode also bring sufficient space to accommodate volume expansion, thereby improving the stability of electrode. Therefore, this work points an effective approach to harnessing the potential of corn straw and also constructing an electrode with a multichannel and porous structure and low tortuosity, ultimately enhancing the electrochemical performance for lithium batteries.</p></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"209 ","pages":"Article 117995"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of high conductivity electrode for superior performance lithium-ion batteries based on low tortuosity corn straw biochar/VS4 with multichannel structure\",\"authors\":\"Jiaxun Yang , Feng Zhen , Qiyu Wang , Quanguo Zhang , Hongru Li , Lingling Zhang , Bin Qu\",\"doi\":\"10.1016/j.indcrop.2023.117995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>It is an effective measure to achieve the application agricultural waste and the development of sustainable energy by effectively utilizing the corn straw with natural multichannel structure in electrochemical energy storage devices. Corn straw biochar as a sustainable and environmentally friendly form of clean energy, serves as a carbon-based material in </span>electrode of lithium-ion batteries. The natural multi-channels and </span>sieve tube structure is the foundation for the electrode with low tortuosity. Within the traditional carbon materials, these characteristics are not commonly presented. In this study, a strategy is proposed to boost the performance of the electrode by devising and modifying its structure. The multichannel and porous structure within the electrodes is achieved by leveraging the natural structure of corn straw. This unique structure can bring low tortuosity in the electrode, thereby facilitating the construction of the direct ions transfer channels and continuous electrons pathways. Moreover, the inherent nitrogenous feature of biochar result in enhanced surface polarity, enabling the electrode material to trap the polar polysulfides efficiently. Additionally, the multichannel and porous structure of electrode also bring sufficient space to accommodate volume expansion, thereby improving the stability of electrode. Therefore, this work points an effective approach to harnessing the potential of corn straw and also constructing an electrode with a multichannel and porous structure and low tortuosity, ultimately enhancing the electrochemical performance for lithium batteries.</p></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"209 \",\"pages\":\"Article 117995\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669023017600\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669023017600","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Study of high conductivity electrode for superior performance lithium-ion batteries based on low tortuosity corn straw biochar/VS4 with multichannel structure
It is an effective measure to achieve the application agricultural waste and the development of sustainable energy by effectively utilizing the corn straw with natural multichannel structure in electrochemical energy storage devices. Corn straw biochar as a sustainable and environmentally friendly form of clean energy, serves as a carbon-based material in electrode of lithium-ion batteries. The natural multi-channels and sieve tube structure is the foundation for the electrode with low tortuosity. Within the traditional carbon materials, these characteristics are not commonly presented. In this study, a strategy is proposed to boost the performance of the electrode by devising and modifying its structure. The multichannel and porous structure within the electrodes is achieved by leveraging the natural structure of corn straw. This unique structure can bring low tortuosity in the electrode, thereby facilitating the construction of the direct ions transfer channels and continuous electrons pathways. Moreover, the inherent nitrogenous feature of biochar result in enhanced surface polarity, enabling the electrode material to trap the polar polysulfides efficiently. Additionally, the multichannel and porous structure of electrode also bring sufficient space to accommodate volume expansion, thereby improving the stability of electrode. Therefore, this work points an effective approach to harnessing the potential of corn straw and also constructing an electrode with a multichannel and porous structure and low tortuosity, ultimately enhancing the electrochemical performance for lithium batteries.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.