研究添加了 0.005 Vol.% 氧化铝纳米颗粒的 AA2024-AA1050 纳米复合材料在累积辊粘工艺中的老化过程、微观结构和机械性能的变化。

0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hamed Roghani, Ehsan Borhani, Ehsan Ahmadi, Hamid Reza Jafarian
{"title":"研究添加了 0.005 Vol.% 氧化铝纳米颗粒的 AA2024-AA1050 纳米复合材料在累积辊粘工艺中的老化过程、微观结构和机械性能的变化。","authors":"Hamed Roghani, Ehsan Borhani, Ehsan Ahmadi, Hamid Reza Jafarian","doi":"10.1186/s11671-023-03917-2","DOIUrl":null,"url":null,"abstract":"<p><p>We created AA2024-AA1050 and AA2024-AA1050/0.005 vol.% Al<sub>2</sub>O<sub>3</sub> nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024-AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024-AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024-AA1050/Al<sub>2</sub>O<sub>3</sub> nanocomposites.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study of changes in the aging process, microstructure, and mechanical properties of AA2024-AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles.\",\"authors\":\"Hamed Roghani, Ehsan Borhani, Ehsan Ahmadi, Hamid Reza Jafarian\",\"doi\":\"10.1186/s11671-023-03917-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We created AA2024-AA1050 and AA2024-AA1050/0.005 vol.% Al<sub>2</sub>O<sub>3</sub> nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024-AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024-AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024-AA1050/Al<sub>2</sub>O<sub>3</sub> nanocomposites.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-023-03917-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-023-03917-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们通过六次累积辊粘合(ARB)工艺循环制造出了 AA2024-AA1050 和 AA2024-AA1050/0.005 vol.% Al2O3 纳米复合材料。我们使用厚度为 0.7 毫米的 AA2024 和 AA1050 板材以及板状氧化铝纳米颗粒来制造复合材料。两块 AA1050 板材和一块 AA2024 板材(在两块 AA1050 板材中)在添加和不添加纳米氧化铝颗粒的情况下进行了长达六个循环的 ARB 处理。此外,我们还对未制作复合材料的 AA1050 样品进行了六次 ARB 试验。ARB 过程结束后,我们在 110、150 和 190 °C 的炉中对一些复合材料进行了老化处理。本项目对经过 ARB 处理的板材进行了 SEM、TEM、EDS-MAP 分析、拉伸强度、显微硬度和圆盘针刺测试。拉伸试验结果表明,通过六次 ARB 工艺制作的 AA2024-AA1050 的拉伸强度是原生 AA1050 的两倍。此外,这种复合材料的耐磨性比经过六次 ARB 处理的 AA1050 提高了 74%。在 AA2024-AA1050 复合材料中加入 0.005 Vol.% 的纳米氧化铝颗粒后,其耐磨性提高了 30%。随后,老化过程提高了 AA2024-AA1050/Al2O3 纳米复合材料的拉伸强度和总伸长率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study of changes in the aging process, microstructure, and mechanical properties of AA2024-AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles.

Study of changes in the aging process, microstructure, and mechanical properties of AA2024-AA1050 nanocomposites created by the accumulative roll bonding process, with the addition of 0.005 vol.% of alumina nanoparticles.

We created AA2024-AA1050 and AA2024-AA1050/0.005 vol.% Al2O3 nanocomposites by six accumulative roll bonding (ARB) process cycles. We used AA2024 and AA1050 sheets with a thickness of 0.7 mm and plate-shaped alumina nanoparticles to create a composite. The two AA1050 and one AA2024 sheets (among the two AA1050 sheets) were ARB-ed up to six cycles with and without adding alumina nanoparticles. Also, a sample of the AA1050 without composite making was ARB-ed up to six cycles. We aged some composites after the ARB process in the furnace at 110, 150, and 190 °C. This project performed SEM, TEM, and EDS-MAP analyses, tensile strength, microhardness, and Pin-on-Disc tests to study the ARB-ed sheets. The results of the tensile tests showed that the tensile strength of AA2024-AA1050 created by the six cycles ARB process was two times more than primary AA1050. Also, the wear resistance of this composite was 74% more than six cycles ARB-ed the AA1050. Using 0.005 vol.% alumina nanoparticles in AA2024-AA1050 composite improved its wear resistance by 30%. In the following, the aging process caused an improvement in tensile strength and total elongation of AA2024-AA1050/Al2O3 nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信