推进生物医学工程:利用 Hjorth 特征进行脑电信号分析。

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2023-12-31 eCollection Date: 2023-01-01 DOI:10.2478/joeb-2023-0009
Wissam H Alawee, Ali Basem, Luttfi A Al-Haddad
{"title":"推进生物医学工程:利用 Hjorth 特征进行脑电信号分析。","authors":"Wissam H Alawee, Ali Basem, Luttfi A Al-Haddad","doi":"10.2478/joeb-2023-0009","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical engineering stands at the forefront of medical innovation, with electroencephalography (EEG) signal analysis providing critical insights into neural functions. This paper delves into the utilization of EEG signals within the MILimbEEG dataset to explore their potential for machine learning-based task recognition and diagnosis. Capturing the brain's electrical activity through electrodes 1 to 16, the signals are recorded in the time-domain in microvolts. An advanced feature extraction methodology harnessing Hjorth Parameters-namely Activity, Mobility, and Complexity-is employed to analyze the acquired signals. Through correlation analysis and examination of clustering behaviors, the study presents a comprehensive discussion on the emergent patterns within the data. The findings underscore the potential of integrating these features into machine learning algorithms for enhanced diagnostic precision and task recognition in biomedical applications. This exploration paves the way for future research where such signal processing techniques could revolutionize the efficiency and accuracy of biomedical engineering diagnostics.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"14 1","pages":"66-72"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis.\",\"authors\":\"Wissam H Alawee, Ali Basem, Luttfi A Al-Haddad\",\"doi\":\"10.2478/joeb-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomedical engineering stands at the forefront of medical innovation, with electroencephalography (EEG) signal analysis providing critical insights into neural functions. This paper delves into the utilization of EEG signals within the MILimbEEG dataset to explore their potential for machine learning-based task recognition and diagnosis. Capturing the brain's electrical activity through electrodes 1 to 16, the signals are recorded in the time-domain in microvolts. An advanced feature extraction methodology harnessing Hjorth Parameters-namely Activity, Mobility, and Complexity-is employed to analyze the acquired signals. Through correlation analysis and examination of clustering behaviors, the study presents a comprehensive discussion on the emergent patterns within the data. The findings underscore the potential of integrating these features into machine learning algorithms for enhanced diagnostic precision and task recognition in biomedical applications. This exploration paves the way for future research where such signal processing techniques could revolutionize the efficiency and accuracy of biomedical engineering diagnostics.</p>\",\"PeriodicalId\":38125,\"journal\":{\"name\":\"Journal of Electrical Bioimpedance\",\"volume\":\"14 1\",\"pages\":\"66-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Bioimpedance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/joeb-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

生物医学工程站在医学创新的前沿,脑电图(EEG)信号分析为神经功能提供了重要的洞察力。本文将深入研究如何利用 MILimbEEG 数据集中的脑电信号,探索其在基于机器学习的任务识别和诊断方面的潜力。通过 1 至 16 号电极捕捉大脑的电活动,以微伏特为单位记录时域信号。利用 Hjorth 参数(即活动性、移动性和完整性)的先进特征提取方法来分析获取的信号。通过相关性分析和聚类行为检查,该研究对数据中出现的模式进行了全面讨论。研究结果强调了将这些特征整合到机器学习算法中的潜力,以提高生物医学应用中的诊断精度和任务识别能力。这一探索为未来的研究铺平了道路,在未来的研究中,此类信号处理技术将彻底改变生物医学工程诊断的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis.

Biomedical engineering stands at the forefront of medical innovation, with electroencephalography (EEG) signal analysis providing critical insights into neural functions. This paper delves into the utilization of EEG signals within the MILimbEEG dataset to explore their potential for machine learning-based task recognition and diagnosis. Capturing the brain's electrical activity through electrodes 1 to 16, the signals are recorded in the time-domain in microvolts. An advanced feature extraction methodology harnessing Hjorth Parameters-namely Activity, Mobility, and Complexity-is employed to analyze the acquired signals. Through correlation analysis and examination of clustering behaviors, the study presents a comprehensive discussion on the emergent patterns within the data. The findings underscore the potential of integrating these features into machine learning algorithms for enhanced diagnostic precision and task recognition in biomedical applications. This exploration paves the way for future research where such signal processing techniques could revolutionize the efficiency and accuracy of biomedical engineering diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信