{"title":"金聚合物纳米材料:增强生物分子成像的可行方法。","authors":"Panangattukara Prabhakaran Praveen Kumar, Ritu Mahajan","doi":"10.7150/ntno.89087","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) possess unique optical properties, making them highly attractive nanomaterials for biomedical research. By exploiting the diverse optical characteristics of various gold nanostructures, significant enhancements can be achieved in biosensing and biomedical imaging fields. The potential of AuNPs can be enhanced by creating hybrid nanocomposites with polymers, which offer supplementary functionalities, responsiveness, and enhanced biocompatibility. Moreover, polymers can modify the surface charges of AuNPs, thereby improving or controlling the efficiency of cellular uptake and the distribution of these nanoparticles within the body. Polymer modification using AuNPs offers a wide array of benefits, including improved sensitivity, specificity, speed, contrast, resolution, and penetration depth. By incorporating AuNPs into the polymer matrix, these enhancements synergistically enhance the overall performance of various applications. This versatile approach opens promising possibilities in fields such as biomedicine, nanotechnology, and sensor development, providing a powerful platform for advanced research and technological innovations. In this review, the recent advancements in polymer-AuNPs synthesis and their applications in bioimaging will be covered. Prospects and challenges associated with polymer-AuNPs-based bioimaging agents in preclinical and clinical investigations will be discussed.</p>","PeriodicalId":36934,"journal":{"name":"Nanotheranostics","volume":"8 1","pages":"64-89"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750122/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gold Polymer Nanomaterials: A Promising Approach for Enhanced Biomolecular Imaging.\",\"authors\":\"Panangattukara Prabhakaran Praveen Kumar, Ritu Mahajan\",\"doi\":\"10.7150/ntno.89087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold nanoparticles (AuNPs) possess unique optical properties, making them highly attractive nanomaterials for biomedical research. By exploiting the diverse optical characteristics of various gold nanostructures, significant enhancements can be achieved in biosensing and biomedical imaging fields. The potential of AuNPs can be enhanced by creating hybrid nanocomposites with polymers, which offer supplementary functionalities, responsiveness, and enhanced biocompatibility. Moreover, polymers can modify the surface charges of AuNPs, thereby improving or controlling the efficiency of cellular uptake and the distribution of these nanoparticles within the body. Polymer modification using AuNPs offers a wide array of benefits, including improved sensitivity, specificity, speed, contrast, resolution, and penetration depth. By incorporating AuNPs into the polymer matrix, these enhancements synergistically enhance the overall performance of various applications. This versatile approach opens promising possibilities in fields such as biomedicine, nanotechnology, and sensor development, providing a powerful platform for advanced research and technological innovations. In this review, the recent advancements in polymer-AuNPs synthesis and their applications in bioimaging will be covered. Prospects and challenges associated with polymer-AuNPs-based bioimaging agents in preclinical and clinical investigations will be discussed.</p>\",\"PeriodicalId\":36934,\"journal\":{\"name\":\"Nanotheranostics\",\"volume\":\"8 1\",\"pages\":\"64-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotheranostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7150/ntno.89087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7150/ntno.89087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Gold Polymer Nanomaterials: A Promising Approach for Enhanced Biomolecular Imaging.
Gold nanoparticles (AuNPs) possess unique optical properties, making them highly attractive nanomaterials for biomedical research. By exploiting the diverse optical characteristics of various gold nanostructures, significant enhancements can be achieved in biosensing and biomedical imaging fields. The potential of AuNPs can be enhanced by creating hybrid nanocomposites with polymers, which offer supplementary functionalities, responsiveness, and enhanced biocompatibility. Moreover, polymers can modify the surface charges of AuNPs, thereby improving or controlling the efficiency of cellular uptake and the distribution of these nanoparticles within the body. Polymer modification using AuNPs offers a wide array of benefits, including improved sensitivity, specificity, speed, contrast, resolution, and penetration depth. By incorporating AuNPs into the polymer matrix, these enhancements synergistically enhance the overall performance of various applications. This versatile approach opens promising possibilities in fields such as biomedicine, nanotechnology, and sensor development, providing a powerful platform for advanced research and technological innovations. In this review, the recent advancements in polymer-AuNPs synthesis and their applications in bioimaging will be covered. Prospects and challenges associated with polymer-AuNPs-based bioimaging agents in preclinical and clinical investigations will be discussed.