广义泊松差分自回归过程

IF 6.9 2区 经济学 Q1 ECONOMICS
{"title":"广义泊松差分自回归过程","authors":"","doi":"10.1016/j.ijforecast.2023.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001310/pdfft?md5=4c712880186f559616263672436b5004&pid=1-s2.0-S0169207023001310-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Poisson difference autoregressive processes\",\"authors\":\"\",\"doi\":\"10.1016/j.ijforecast.2023.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001310/pdfft?md5=4c712880186f559616263672436b5004&pid=1-s2.0-S0169207023001310-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001310\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001310","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种带符号整数值的新型随机过程。它的自回归动态有效地捕捉了条件矩的持续性,使其成为预测应用的一个重要特征。增量遵循广义泊松分布,能够适应条件分布中的过度分散和欠分散,从而扩展了标准泊松差分模型。我们推导出了该过程的关键属性,包括静态条件、静态分布以及条件矩和无条件矩,这些属性对于准确预测至关重要。我们提供了一个贝叶斯推理框架,它具有基于马尔可夫链蒙特卡罗的高效后验近似。这种方法将固有参数的不确定性无缝纳入预测分布。通过对车祸基准数据集和网络威胁原始数据集的应用,证明了所提模型的有效性,突出了其与标准泊松模型相比更优越的拟合和预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Poisson difference autoregressive processes

This paper introduces a novel stochastic process with signed integer values. Its autoregressive dynamics effectively captures persistence in conditional moments, rendering it a valuable feature for forecasting applications. The increments follow a Generalized Poisson distribution, capable of accommodating over- and under-dispersion in the conditional distribution, thereby extending standard Poisson difference models. We derive key properties of the process, including stationarity conditions, the stationary distribution, and conditional and unconditional moments, which prove essential for accurate forecasting. We provide a Bayesian inference framework with an efficient posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly incorporates inherent parameter uncertainty into predictive distributions. The effectiveness of the proposed model is demonstrated through applications to benchmark datasets on car accidents and an original dataset on cyber threats, highlighting its superior fitting and forecasting capabilities compared to standard Poisson models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信