{"title":"银介导和钯催化协同非定向烯化芳基 C-H 键:快速获得多取代芳基烯烃","authors":"Jian Yao, Lili Shao, Xiaohong Huo, Xiaoming Wang","doi":"10.1007/s11426-023-1834-2","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal-catalyzed olefination of aryl C–H bond is a powerful tool for the synthesis of alkenes. While the Pd-catalyzed oxidative C–H olefination of arenes, also known as Fujiwara-Moritani reaction, has been established as one of the most efficient methods, the substrates are largely limited to terminal olefins with electron-withdrawing group(s). Herein, we report a synergistic silver-mediated and palladium-catalyzed non-directed C–H olefination of arenes with vinyl (pseudo)halides, which offers a complementary strategy to the typical Fujiwara-Moritani reaction. The reactions proceeded well for a variety of halogenated arenes, heteroarenes, and olefin substrates, providing an efficient access to various multi-substituted aryl olefins, including trisubstituted/tetrasubstituted olefins and several complex olefins derived from medicines or natural products. Mechanistic studies indicated a bimetallic Pd/Ag cooperation is operative in the catalysis, <i>i.e.</i>, the reaction is initiated by aryl C–H bond cleavage <i>via</i> ligation with phosphine/Ag species, followed by transferring of the aryl moiety to a vinyl palladium intermediate, which is in turn formed by oxidative addition of vinyl (pseudo)halide to a Pd complex. This method enables the synthesis of a wide range of challenging multi-substituted vinyl products from simple arenes (directing-group free) in a streamlined and controllable fashion.</p></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 3","pages":"882 - 889"},"PeriodicalIF":10.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11426-023-1834-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins\",\"authors\":\"Jian Yao, Lili Shao, Xiaohong Huo, Xiaoming Wang\",\"doi\":\"10.1007/s11426-023-1834-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transition metal-catalyzed olefination of aryl C–H bond is a powerful tool for the synthesis of alkenes. While the Pd-catalyzed oxidative C–H olefination of arenes, also known as Fujiwara-Moritani reaction, has been established as one of the most efficient methods, the substrates are largely limited to terminal olefins with electron-withdrawing group(s). Herein, we report a synergistic silver-mediated and palladium-catalyzed non-directed C–H olefination of arenes with vinyl (pseudo)halides, which offers a complementary strategy to the typical Fujiwara-Moritani reaction. The reactions proceeded well for a variety of halogenated arenes, heteroarenes, and olefin substrates, providing an efficient access to various multi-substituted aryl olefins, including trisubstituted/tetrasubstituted olefins and several complex olefins derived from medicines or natural products. Mechanistic studies indicated a bimetallic Pd/Ag cooperation is operative in the catalysis, <i>i.e.</i>, the reaction is initiated by aryl C–H bond cleavage <i>via</i> ligation with phosphine/Ag species, followed by transferring of the aryl moiety to a vinyl palladium intermediate, which is in turn formed by oxidative addition of vinyl (pseudo)halide to a Pd complex. This method enables the synthesis of a wide range of challenging multi-substituted vinyl products from simple arenes (directing-group free) in a streamlined and controllable fashion.</p></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"67 3\",\"pages\":\"882 - 889\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11426-023-1834-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-023-1834-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1834-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins
Transition metal-catalyzed olefination of aryl C–H bond is a powerful tool for the synthesis of alkenes. While the Pd-catalyzed oxidative C–H olefination of arenes, also known as Fujiwara-Moritani reaction, has been established as one of the most efficient methods, the substrates are largely limited to terminal olefins with electron-withdrawing group(s). Herein, we report a synergistic silver-mediated and palladium-catalyzed non-directed C–H olefination of arenes with vinyl (pseudo)halides, which offers a complementary strategy to the typical Fujiwara-Moritani reaction. The reactions proceeded well for a variety of halogenated arenes, heteroarenes, and olefin substrates, providing an efficient access to various multi-substituted aryl olefins, including trisubstituted/tetrasubstituted olefins and several complex olefins derived from medicines or natural products. Mechanistic studies indicated a bimetallic Pd/Ag cooperation is operative in the catalysis, i.e., the reaction is initiated by aryl C–H bond cleavage via ligation with phosphine/Ag species, followed by transferring of the aryl moiety to a vinyl palladium intermediate, which is in turn formed by oxidative addition of vinyl (pseudo)halide to a Pd complex. This method enables the synthesis of a wide range of challenging multi-substituted vinyl products from simple arenes (directing-group free) in a streamlined and controllable fashion.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.