关于具有形状参数 α 的混合型伯恩斯坦-舒勒-康托洛维奇算子近似的说明

IF 1.3 4区 数学 Q1 MATHEMATICS
Mohammad Ayman-Mursaleen, Nadeem Rao, Mamta Rani, Adem Kilicman, Ahmed Ahmed Hussin Ali Al-Abied, Pradeep Malik
{"title":"关于具有形状参数 α 的混合型伯恩斯坦-舒勒-康托洛维奇算子近似的说明","authors":"Mohammad Ayman-Mursaleen, Nadeem Rao, Mamta Rani, Adem Kilicman, Ahmed Ahmed Hussin Ali Al-Abied, Pradeep Malik","doi":"10.1155/2023/5245806","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to construct univariate and bivariate blending type <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.51131 6.1673\" width=\"7.51131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>Schurer–Kantorovich operators depending on two parameters <span><svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.881 11.439\" width=\"17.881pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"></path></g></svg><span></span><svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"21.463183800000003 -9.28833 26.836 11.439\" width=\"26.836pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.513,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,25.998,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.238,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,37.381,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.621,0)\"></path></g></svg></span> and <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.273 11.7782\" width=\"18.273pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.642,0)\"></path></g></svg><span></span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"21.855183800000002 -8.34882 6.415 11.7782\" width=\"6.415pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.905,0)\"><use xlink:href=\"#g113-49\"></use></g></svg></span> to approximate a class of measurable functions on <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 32.645 12.7178\" width=\"32.645pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.725,0)\"><use xlink:href=\"#g113-45\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.868,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.014,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"35.500183799999995 -9.28833 13.832 12.7178\" width=\"13.832pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.55,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,41.933,0)\"><use xlink:href=\"#g113-94\"></use></g><g transform=\"matrix(.013,0,0,-0.013,46.418,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"51.512183799999995 -9.28833 17.646 12.7178\" width=\"17.646pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.562,0)\"><use xlink:href=\"#g113-114\"></use></g><g transform=\"matrix(.013,0,0,-0.013,61.577,0)\"><use xlink:href=\"#g117-92\"></use></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"72.7891838 -9.28833 6.571 12.7178\" width=\"6.571pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,72.839,0)\"><use xlink:href=\"#g113-49\"></use></g></svg>.</span></span> We present some auxiliary results and obtain the rate of convergence of these operators. Next, we study the global and local approximation properties in terms of first- and second-order modulus of smoothness, weight functions, and by Peetre’s <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.95144 8.68572\" width=\"9.95144pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>functional in different function spaces. Moreover, we present some study on numerical and graphical analysis for our operators.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Approximation of Blending Type Bernstein–Schurer–Kantorovich Operators with Shape Parameter α\",\"authors\":\"Mohammad Ayman-Mursaleen, Nadeem Rao, Mamta Rani, Adem Kilicman, Ahmed Ahmed Hussin Ali Al-Abied, Pradeep Malik\",\"doi\":\"10.1155/2023/5245806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to construct univariate and bivariate blending type <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.51131 6.1673\\\" width=\\\"7.51131pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span>Schurer–Kantorovich operators depending on two parameters <span><svg height=\\\"11.439pt\\\" style=\\\"vertical-align:-2.15067pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.881 11.439\\\" width=\\\"17.881pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.017,0)\\\"></path></g></svg><span></span><svg height=\\\"11.439pt\\\" style=\\\"vertical-align:-2.15067pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.463183800000003 -9.28833 26.836 11.439\\\" width=\\\"26.836pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.513,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,25.998,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.238,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,37.381,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,43.621,0)\\\"></path></g></svg></span> and <span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 18.273 11.7782\\\" width=\\\"18.273pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.642,0)\\\"></path></g></svg><span></span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.855183800000002 -8.34882 6.415 11.7782\\\" width=\\\"6.415pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.905,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g></svg></span> to approximate a class of measurable functions on <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 32.645 12.7178\\\" width=\\\"32.645pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-92\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.485,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.725,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.868,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.014,0)\\\"></path></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"35.500183799999995 -9.28833 13.832 12.7178\\\" width=\\\"13.832pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,35.55,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,41.933,0)\\\"><use xlink:href=\\\"#g113-94\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,46.418,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"51.512183799999995 -9.28833 17.646 12.7178\\\" width=\\\"17.646pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,51.562,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,61.577,0)\\\"><use xlink:href=\\\"#g117-92\\\"></use></g></svg><span></span><span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"72.7891838 -9.28833 6.571 12.7178\\\" width=\\\"6.571pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,72.839,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g></svg>.</span></span> We present some auxiliary results and obtain the rate of convergence of these operators. Next, we study the global and local approximation properties in terms of first- and second-order modulus of smoothness, weight functions, and by Peetre’s <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.95144 8.68572\\\" width=\\\"9.95144pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span>functional in different function spaces. Moreover, we present some study on numerical and graphical analysis for our operators.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5245806\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2023/5245806","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是构建取决于两个参数的单变量和双变量混合型 -Schurer-Kantorovich 算子,并逼近.NET 上的一类可测函数。我们提出了一些辅助结果,并获得了这些算子的收敛率。接下来,我们从一阶和二阶平滑模量、权重函数以及不同函数空间中的 Peetre 函数等方面研究了全局和局部逼近特性。此外,我们还对我们的算子进行了一些数值和图形分析研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Approximation of Blending Type Bernstein–Schurer–Kantorovich Operators with Shape Parameter α
The objective of this paper is to construct univariate and bivariate blending type -Schurer–Kantorovich operators depending on two parameters and to approximate a class of measurable functions on . We present some auxiliary results and obtain the rate of convergence of these operators. Next, we study the global and local approximation properties in terms of first- and second-order modulus of smoothness, weight functions, and by Peetre’s -functional in different function spaces. Moreover, we present some study on numerical and graphical analysis for our operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信