Pascal Bargiela, Vincent Fernandez, William Ravisy, David Morgan, Mireille Richard-Plouet, Neal Fairley, Jonas Baltrusaitis
{"title":"表面分析洞察说明:与氧化钛薄膜的光发射峰形状、氧化态和化学性质有关的观察结果","authors":"Pascal Bargiela, Vincent Fernandez, William Ravisy, David Morgan, Mireille Richard-Plouet, Neal Fairley, Jonas Baltrusaitis","doi":"10.1002/sia.7283","DOIUrl":null,"url":null,"abstract":"It is common practice to describe the coordination of metal atoms in a binding configuration with their nearest neighbors in terms of oxidation state, a measure by which the number of electrons redistributed between atoms forming chemical bonds. In XPS terms, change to an oxidation state is commonly inferred by correlating photoemission signal with binding energy. The assumption, when classifying photoemission signals into distinct spectral shapes, is that a distribution of intensities shifted to lower binding energy is evidence of a reduction in oxidation state. In this <i>Insight</i> note, we raise the prospect that changes in photoemission peak shape may occur without obvious changes, determined by XPS in stoichiometry for a material. It is well known that TiO<sub>2</sub> measured by XPS yields reproducible Ti 2p photoemission peaks. However, on exposing TiO<sub>2</sub> to ion beams, Ti 2p photoemission evolves to complex distributions in intensity, which are particularly difficult to analyze by traditional fitting of bell-shaped curves to these data. For these reasons, in this <i>Insight</i> note, a thin film of TiO<sub>2</sub> deposited on a silicon substrate is chosen for analysis by XPS and linear algebraic techniques. Alterations in spectral shapes created from modified TiO<sub>2</sub>, which might be interpreted as the change in oxidation state, are assessed in terms of relative proportions of titanium to oxygen. It is found through detailed analysis of spectra that quantification by XPS, using procedures routinely used in practice, is not in accord with the typical interpretations of photoemission shapes. The data processing methods used and results presented in this work are of particular relevance to elucidating fundamental phenomena governing the surface evolution of materials-enabled energy processes where cyclic/non-steady usage changes the nature of bonding, especially in the presence of contaminants.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"18 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Analysis Insight Note: Observations relating to photoemission peak shapes, oxidation state, and chemistry of titanium oxide films\",\"authors\":\"Pascal Bargiela, Vincent Fernandez, William Ravisy, David Morgan, Mireille Richard-Plouet, Neal Fairley, Jonas Baltrusaitis\",\"doi\":\"10.1002/sia.7283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common practice to describe the coordination of metal atoms in a binding configuration with their nearest neighbors in terms of oxidation state, a measure by which the number of electrons redistributed between atoms forming chemical bonds. In XPS terms, change to an oxidation state is commonly inferred by correlating photoemission signal with binding energy. The assumption, when classifying photoemission signals into distinct spectral shapes, is that a distribution of intensities shifted to lower binding energy is evidence of a reduction in oxidation state. In this <i>Insight</i> note, we raise the prospect that changes in photoemission peak shape may occur without obvious changes, determined by XPS in stoichiometry for a material. It is well known that TiO<sub>2</sub> measured by XPS yields reproducible Ti 2p photoemission peaks. However, on exposing TiO<sub>2</sub> to ion beams, Ti 2p photoemission evolves to complex distributions in intensity, which are particularly difficult to analyze by traditional fitting of bell-shaped curves to these data. For these reasons, in this <i>Insight</i> note, a thin film of TiO<sub>2</sub> deposited on a silicon substrate is chosen for analysis by XPS and linear algebraic techniques. Alterations in spectral shapes created from modified TiO<sub>2</sub>, which might be interpreted as the change in oxidation state, are assessed in terms of relative proportions of titanium to oxygen. It is found through detailed analysis of spectra that quantification by XPS, using procedures routinely used in practice, is not in accord with the typical interpretations of photoemission shapes. The data processing methods used and results presented in this work are of particular relevance to elucidating fundamental phenomena governing the surface evolution of materials-enabled energy processes where cyclic/non-steady usage changes the nature of bonding, especially in the presence of contaminants.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7283\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7283","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface Analysis Insight Note: Observations relating to photoemission peak shapes, oxidation state, and chemistry of titanium oxide films
It is common practice to describe the coordination of metal atoms in a binding configuration with their nearest neighbors in terms of oxidation state, a measure by which the number of electrons redistributed between atoms forming chemical bonds. In XPS terms, change to an oxidation state is commonly inferred by correlating photoemission signal with binding energy. The assumption, when classifying photoemission signals into distinct spectral shapes, is that a distribution of intensities shifted to lower binding energy is evidence of a reduction in oxidation state. In this Insight note, we raise the prospect that changes in photoemission peak shape may occur without obvious changes, determined by XPS in stoichiometry for a material. It is well known that TiO2 measured by XPS yields reproducible Ti 2p photoemission peaks. However, on exposing TiO2 to ion beams, Ti 2p photoemission evolves to complex distributions in intensity, which are particularly difficult to analyze by traditional fitting of bell-shaped curves to these data. For these reasons, in this Insight note, a thin film of TiO2 deposited on a silicon substrate is chosen for analysis by XPS and linear algebraic techniques. Alterations in spectral shapes created from modified TiO2, which might be interpreted as the change in oxidation state, are assessed in terms of relative proportions of titanium to oxygen. It is found through detailed analysis of spectra that quantification by XPS, using procedures routinely used in practice, is not in accord with the typical interpretations of photoemission shapes. The data processing methods used and results presented in this work are of particular relevance to elucidating fundamental phenomena governing the surface evolution of materials-enabled energy processes where cyclic/non-steady usage changes the nature of bonding, especially in the presence of contaminants.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).