关于可识别数列和正则表达式及其最小线性表示之间关系的说明

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Clemens Heuberger , Daniel Krenn , Gabriel F. Lipnik
{"title":"关于可识别数列和正则表达式及其最小线性表示之间关系的说明","authors":"Clemens Heuberger ,&nbsp;Daniel Krenn ,&nbsp;Gabriel F. Lipnik","doi":"10.1016/j.jsc.2023.102295","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we precisely elaborate the connection between recognisable series (in the sense of Berstel and Reutenauer) and <em>q</em>-regular sequences (in the sense of Allouche and Shallit) via their linear representations. In particular, we show that the minimisation algorithm for recognisable series can also be used to minimise linear representations of <em>q</em>-regular sequences.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717123001098/pdfft?md5=492907babc8de19f0ee8ae11896722d4&pid=1-s2.0-S0747717123001098-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on the relation between recognisable series and regular sequences, and their minimal linear representations\",\"authors\":\"Clemens Heuberger ,&nbsp;Daniel Krenn ,&nbsp;Gabriel F. Lipnik\",\"doi\":\"10.1016/j.jsc.2023.102295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we precisely elaborate the connection between recognisable series (in the sense of Berstel and Reutenauer) and <em>q</em>-regular sequences (in the sense of Allouche and Shallit) via their linear representations. In particular, we show that the minimisation algorithm for recognisable series can also be used to minimise linear representations of <em>q</em>-regular sequences.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717123001098/pdfft?md5=492907babc8de19f0ee8ae11896722d4&pid=1-s2.0-S0747717123001098-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123001098\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123001098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们通过可识别数列的线性表示,精确阐述了可识别数列(Berstel 和 Reutenauer 意义上的)与 q-regular 序列(Allouche 和 Shallit 意义上的)之间的联系。我们特别指出,可识别数列的最小化算法也可用于最小化 q-regular 序列的线性表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the relation between recognisable series and regular sequences, and their minimal linear representations

In this note, we precisely elaborate the connection between recognisable series (in the sense of Berstel and Reutenauer) and q-regular sequences (in the sense of Allouche and Shallit) via their linear representations. In particular, we show that the minimisation algorithm for recognisable series can also be used to minimise linear representations of q-regular sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信