权衡微重力对前庭和视觉功能的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexander J. Dontre
{"title":"权衡微重力对前庭和视觉功能的影响","authors":"Alexander J. Dontre","doi":"10.1016/j.lssr.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible </span>intracranial pressure<span><span> changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and </span>artificial gravity achieved with a centrifuge or spacecraft rotation.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighing the impact of microgravity on vestibular and visual functions\",\"authors\":\"Alexander J. Dontre\",\"doi\":\"10.1016/j.lssr.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible </span>intracranial pressure<span><span> changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and </span>artificial gravity achieved with a centrifuge or spacecraft rotation.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214552423000858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552423000858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了实现人类的太空探索,已经克服了无数的技术挑战。随着任务持续时间的逐渐延长,下一个障碍是一系列物理限制。长时间暴露在微重力环境中会对身体的各种系统造成多种威胁。其中两个系统尤其关系到未来太空任务的成败。前庭系统包括耳石器官,这些器官在重力环境下受到刺激,但在微重力环境下则没有负荷。这会影响感知、姿势和协调,而所有这些都与飞行任务的成功有关。同样,许多太空旅行者的视力也会受到影响,这可能是由于颅内压力变化或脑内液体移动造成的。在人类准备前往火星和更远的地方执行长期任务时,必须对长期失重状态下的这些危险进行补偿。我们考虑了一些可能的对策,如运动疗法、改善营养状况以及利用离心机或航天器旋转实现人工重力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighing the impact of microgravity on vestibular and visual functions

Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible intracranial pressure changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and artificial gravity achieved with a centrifuge or spacecraft rotation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信