V. Fioravante , D. Giretti , A. Masella , G. Vaciago
{"title":"浅层地基沉降预测,用于砂质水力填土的质量控制","authors":"V. Fioravante , D. Giretti , A. Masella , G. Vaciago","doi":"10.1016/j.sandf.2023.101408","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes a procedure for settlement prediction of shallow foundations on carbonate sands, but it is fully applicable and valid for siliceous sands. For practical purposes, the design of shallow foundations resting on medium dense and dense granular soils is typically governed by limiting settlement to tolerable values. Predicting foundation settlement is therefore important, but in standard practice it is necessarily based on indirect (and therefore often conservative) determinations of soil compressibility (or modulus), due to the intrinsic difficulties in obtaining direct measurements.</p><p>While numerical analyses incorporating non-linear soil behaviour may be a preferred method for computing expected total and differential settlement of shallow foundations of given geometry and stiffness on sand under static loading, the method described in this paper consists of a simplified and expeditious method based on equivalent linear elasticity. The method uses: i) the elastic soil stiffness profile at small strain, E<sub>0</sub>(z) obtained from the shear wave velocity as the primary measurement of deformability and ii) the reduction in modulus as a function of strain magnitude, E(ε) to account for stiffness non-linearity. The beneficial effect on the soil initial stiffness of the applied footing load is also considered. The method was developed as an on-site tool for checking the compaction of hydraulic fills made of carbonate sand to form artificial islands, but its application can be extended to other natural and anthropogenic coarse-grained materials.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 1","pages":"Article 101408"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080623001373/pdfft?md5=9768d5997b0ab176fc1698b88ca34c74&pid=1-s2.0-S0038080623001373-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Settlement prediction of shallow foundations for quality controls of sandy hydraulic fills\",\"authors\":\"V. Fioravante , D. Giretti , A. Masella , G. Vaciago\",\"doi\":\"10.1016/j.sandf.2023.101408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes a procedure for settlement prediction of shallow foundations on carbonate sands, but it is fully applicable and valid for siliceous sands. For practical purposes, the design of shallow foundations resting on medium dense and dense granular soils is typically governed by limiting settlement to tolerable values. Predicting foundation settlement is therefore important, but in standard practice it is necessarily based on indirect (and therefore often conservative) determinations of soil compressibility (or modulus), due to the intrinsic difficulties in obtaining direct measurements.</p><p>While numerical analyses incorporating non-linear soil behaviour may be a preferred method for computing expected total and differential settlement of shallow foundations of given geometry and stiffness on sand under static loading, the method described in this paper consists of a simplified and expeditious method based on equivalent linear elasticity. The method uses: i) the elastic soil stiffness profile at small strain, E<sub>0</sub>(z) obtained from the shear wave velocity as the primary measurement of deformability and ii) the reduction in modulus as a function of strain magnitude, E(ε) to account for stiffness non-linearity. The beneficial effect on the soil initial stiffness of the applied footing load is also considered. The method was developed as an on-site tool for checking the compaction of hydraulic fills made of carbonate sand to form artificial islands, but its application can be extended to other natural and anthropogenic coarse-grained materials.</p></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"64 1\",\"pages\":\"Article 101408\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0038080623001373/pdfft?md5=9768d5997b0ab176fc1698b88ca34c74&pid=1-s2.0-S0038080623001373-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080623001373\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623001373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Settlement prediction of shallow foundations for quality controls of sandy hydraulic fills
This paper describes a procedure for settlement prediction of shallow foundations on carbonate sands, but it is fully applicable and valid for siliceous sands. For practical purposes, the design of shallow foundations resting on medium dense and dense granular soils is typically governed by limiting settlement to tolerable values. Predicting foundation settlement is therefore important, but in standard practice it is necessarily based on indirect (and therefore often conservative) determinations of soil compressibility (or modulus), due to the intrinsic difficulties in obtaining direct measurements.
While numerical analyses incorporating non-linear soil behaviour may be a preferred method for computing expected total and differential settlement of shallow foundations of given geometry and stiffness on sand under static loading, the method described in this paper consists of a simplified and expeditious method based on equivalent linear elasticity. The method uses: i) the elastic soil stiffness profile at small strain, E0(z) obtained from the shear wave velocity as the primary measurement of deformability and ii) the reduction in modulus as a function of strain magnitude, E(ε) to account for stiffness non-linearity. The beneficial effect on the soil initial stiffness of the applied footing load is also considered. The method was developed as an on-site tool for checking the compaction of hydraulic fills made of carbonate sand to form artificial islands, but its application can be extended to other natural and anthropogenic coarse-grained materials.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.