大循环的多色二方拉姆齐数

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Shao-qiang Liu, Yue-jian Peng
{"title":"大循环的多色二方拉姆齐数","authors":"Shao-qiang Liu,&nbsp;Yue-jian Peng","doi":"10.1007/s10255-024-1118-3","DOIUrl":null,"url":null,"abstract":"<div><p>For an integer <i>r</i> ≥ 2 and bipartite graphs <i>H</i><sub><i>i</i></sub>, where 1≤ <i>i</i> ≤ <i>r</i> the bipartite Ramsey number <i>br</i>(<i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, …, <i>H</i><sub><i>r</i></sub>) is the minimum integer <i>N</i> such that any <i>r</i>-edge coloring of the complete bipartite graph <i>K</i><sub><i>N,N</i></sub> contains a monochromatic subgraph isomorphic to <i>H</i><sub><i>i</i></sub> in color <i>i</i> for some 1 ≤ <i>i</i> ≤ <i>r</i>. We show that if <span>\\(r \\ge 3,{\\alpha _1},{\\alpha _2} &gt; 0,{\\alpha _{j + 2}} \\ge [(j + 2)! - 1]\\sum\\limits_{i = 1}^{j + 1} {{\\alpha _i}} \\)</span> for <i>j</i> = 1, 2, …, <i>r</i> −2, then <span>\\(br({C_{2\\left\\lfloor {{\\alpha _1}\\,n} \\right\\rfloor }},{C_{2\\left\\lfloor {{\\alpha _2}\\,n} \\right\\rfloor }}, \\cdots ,{C_{2\\left\\lfloor {{\\alpha _r}\\,n} \\right\\rfloor }}) = (\\sum\\limits_{j = 1}^r {{\\alpha _j} + o(1))n} \\)</span>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"347 - 357"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicolored Bipartite Ramsey Numbers of Large Cycles\",\"authors\":\"Shao-qiang Liu,&nbsp;Yue-jian Peng\",\"doi\":\"10.1007/s10255-024-1118-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an integer <i>r</i> ≥ 2 and bipartite graphs <i>H</i><sub><i>i</i></sub>, where 1≤ <i>i</i> ≤ <i>r</i> the bipartite Ramsey number <i>br</i>(<i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, …, <i>H</i><sub><i>r</i></sub>) is the minimum integer <i>N</i> such that any <i>r</i>-edge coloring of the complete bipartite graph <i>K</i><sub><i>N,N</i></sub> contains a monochromatic subgraph isomorphic to <i>H</i><sub><i>i</i></sub> in color <i>i</i> for some 1 ≤ <i>i</i> ≤ <i>r</i>. We show that if <span>\\\\(r \\\\ge 3,{\\\\alpha _1},{\\\\alpha _2} &gt; 0,{\\\\alpha _{j + 2}} \\\\ge [(j + 2)! - 1]\\\\sum\\\\limits_{i = 1}^{j + 1} {{\\\\alpha _i}} \\\\)</span> for <i>j</i> = 1, 2, …, <i>r</i> −2, then <span>\\\\(br({C_{2\\\\left\\\\lfloor {{\\\\alpha _1}\\\\,n} \\\\right\\\\rfloor }},{C_{2\\\\left\\\\lfloor {{\\\\alpha _2}\\\\,n} \\\\right\\\\rfloor }}, \\\\cdots ,{C_{2\\\\left\\\\lfloor {{\\\\alpha _r}\\\\,n} \\\\right\\\\rfloor }}) = (\\\\sum\\\\limits_{j = 1}^r {{\\\\alpha _j} + o(1))n} \\\\)</span>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 2\",\"pages\":\"347 - 357\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1118-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1118-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于整数 r ≥ 2 和双元图 Hi,其中 1≤ i ≤ r 的双元拉姆齐数 br(H1,H2,...,Hr)是最小整数 N,使得完整双元图 KN,N 的任何 r 边着色都包含一个在颜色 i 中与 Hi 同构的单色子图,对于某个 1≤ i ≤ r。我们证明如果 \(r \ge 3,{\alpha _1},{\alpha _2} > 0,{\alpha _{j + 2}}\(j + 2)! - 1](sum/limits_{i = 1}^{j + 1}{{α _i}}\) for j = 1, 2, ..., r -2, then \(br({C_{2\left\lfloor {{\alpha _1}\,n}\right\rfloor }},{C_{2left\lfloor {{\alpha _2}\,n}\cdots ,{C_{2\left\lfloor {{\alpha _r}\,n}\right\rfloor }}) = (\sum\limits_{j = 1}^r {{\alpha _j}+ o(1))n}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicolored Bipartite Ramsey Numbers of Large Cycles

For an integer r ≥ 2 and bipartite graphs Hi, where 1≤ ir the bipartite Ramsey number br(H1, H2, …, Hr) is the minimum integer N such that any r-edge coloring of the complete bipartite graph KN,N contains a monochromatic subgraph isomorphic to Hi in color i for some 1 ≤ ir. We show that if \(r \ge 3,{\alpha _1},{\alpha _2} > 0,{\alpha _{j + 2}} \ge [(j + 2)! - 1]\sum\limits_{i = 1}^{j + 1} {{\alpha _i}} \) for j = 1, 2, …, r −2, then \(br({C_{2\left\lfloor {{\alpha _1}\,n} \right\rfloor }},{C_{2\left\lfloor {{\alpha _2}\,n} \right\rfloor }}, \cdots ,{C_{2\left\lfloor {{\alpha _r}\,n} \right\rfloor }}) = (\sum\limits_{j = 1}^r {{\alpha _j} + o(1))n} \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信