分而治之递推规律的同一性和周期性振荡的一半分裂

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Hsien-Kuei Hwang , Svante Janson , Tsung-Hsi Tsai
{"title":"分而治之递推规律的同一性和周期性振荡的一半分裂","authors":"Hsien-Kuei Hwang ,&nbsp;Svante Janson ,&nbsp;Tsung-Hsi Tsai","doi":"10.1016/j.aam.2023.102653","DOIUrl":null,"url":null,"abstract":"<div><p>We study divide-and-conquer recurrences of the form<span><span><span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>f</mi><mo>(</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>)</mo><mo>+</mo><mi>β</mi><mi>f</mi><mo>(</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo><mo>)</mo><mo>+</mo><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo><mspace></mspace><mo>(</mo><mi>n</mi><mo>⩾</mo><mn>2</mn><mo>)</mo><mo>,</mo></math></span></span></span> with <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> given, where <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>⩾</mo><mn>0</mn></math></span> with <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span><span>; such recurrences appear often in the analysis of computer algorithms, numeration systems, combinatorial sequences, and related areas. We show under an optimum (iff) condition on </span><span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> that the solution <em>f</em> always satisfies a simple <em>identity</em><span><span><span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></msup><mi>P</mi><mo>(</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>−</mo><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>P</em> is a periodic function and <span><math><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span><span> is of a smaller order than the dominant term. This form is thus not only an identity but also an asymptotic expansion. Explicit forms for the </span><em>continuity</em> of the periodic function <em>P</em> are provided, together with a few other smoothness properties. We show how our results can be easily applied to many dozens of concrete examples collected from the literature, and how they can be extended in various directions. Our method of proof is surprisingly simple and elementary, but leads to the strongest types of results for all examples to which our theory applies.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identities and periodic oscillations of divide-and-conquer recurrences splitting at half\",\"authors\":\"Hsien-Kuei Hwang ,&nbsp;Svante Janson ,&nbsp;Tsung-Hsi Tsai\",\"doi\":\"10.1016/j.aam.2023.102653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study divide-and-conquer recurrences of the form<span><span><span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>f</mi><mo>(</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>)</mo><mo>+</mo><mi>β</mi><mi>f</mi><mo>(</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo><mo>)</mo><mo>+</mo><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo><mspace></mspace><mo>(</mo><mi>n</mi><mo>⩾</mo><mn>2</mn><mo>)</mo><mo>,</mo></math></span></span></span> with <span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> given, where <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>⩾</mo><mn>0</mn></math></span> with <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span><span>; such recurrences appear often in the analysis of computer algorithms, numeration systems, combinatorial sequences, and related areas. We show under an optimum (iff) condition on </span><span><math><mi>g</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> that the solution <em>f</em> always satisfies a simple <em>identity</em><span><span><span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></msup><mi>P</mi><mo>(</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>−</mo><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>P</em> is a periodic function and <span><math><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span><span> is of a smaller order than the dominant term. This form is thus not only an identity but also an asymptotic expansion. Explicit forms for the </span><em>continuity</em> of the periodic function <em>P</em> are provided, together with a few other smoothness properties. We show how our results can be easily applied to many dozens of concrete examples collected from the literature, and how they can be extended in various directions. Our method of proof is surprisingly simple and elementary, but leads to the strongest types of results for all examples to which our theory applies.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885823001719\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001719","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究形式为f(n)=αf(⌊n2⌋)+βf(⌈n2⌉)+g(n)(n⩾2)的分而治之递归,其中g(n)和f(1)是给定的,α,β⩾0,α+β>;0;在计算机算法、运算系统、组合序列及相关领域的分析中经常出现这种递归。我们证明,在 g(n) 的最优(iff)条件下,解 f 总是满足一个简单的同一性f(n)=nlog2(α+β)P(log2n)-Q(n),其中 P 是周期函数,Q(n) 的阶数小于主项。因此,这种形式不仅是一种特性,也是一种渐近展开。我们提供了周期函数 P 连续性的显式,以及其他一些平滑性质。我们展示了如何将我们的结果轻松应用于从文献中收集的几十个具体例子,以及如何将它们向不同方向扩展。我们的证明方法出乎意料地简单而基本,但却能为我们的理论所适用的所有例子带来最有力的结果类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identities and periodic oscillations of divide-and-conquer recurrences splitting at half

We study divide-and-conquer recurrences of the formf(n)=αf(n2)+βf(n2)+g(n)(n2), with g(n) and f(1) given, where α,β0 with α+β>0; such recurrences appear often in the analysis of computer algorithms, numeration systems, combinatorial sequences, and related areas. We show under an optimum (iff) condition on g(n) that the solution f always satisfies a simple identityf(n)=nlog2(α+β)P(log2n)Q(n), where P is a periodic function and Q(n) is of a smaller order than the dominant term. This form is thus not only an identity but also an asymptotic expansion. Explicit forms for the continuity of the periodic function P are provided, together with a few other smoothness properties. We show how our results can be easily applied to many dozens of concrete examples collected from the literature, and how they can be extended in various directions. Our method of proof is surprisingly simple and elementary, but leads to the strongest types of results for all examples to which our theory applies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信