{"title":"微重力低速气流引燃热厚固体燃料的数值研究","authors":"Kai Zhang, Feng Zhu, Shuangfeng Wang","doi":"10.1007/s12217-023-10092-7","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanisms controlling the dependence on low-velocity flow of the piloted ignition of a solid material under external radiant heating is investigated through a numerical modeling. The poly (methyl methacrylate) (PMMA) was used as the fuel. The objective of the present study is to gain insight into the intrinsic ignition mechanisms of a solid fuel, as well as to gain a more comprehensive understanding of the dynamical characteristics of the ignition process near the extinction limit. For this purpose, a two-dimensional numerical model has been developed using the Fire Dynamic Simulator (FDS5) code, in which both solid-phase and gas-phase reactions are calculated. Two radiant heat flux, which are 16 and 25 kW/m<sup>2</sup> were studied, and an external air flow was varied from 3 to 40 cm/s. The simulation results showed that transient gas reaction flashed before a continuous flame was attached to the sample surface for gas flow velocities lower than a critical value. As the flow velocity is reduced, the flashing time, which is defined as the time when any flame is seen above the sample surface, decreases, while the duration of flashing increases. The solid surface temperature and mass flow rate increase rapidly during flashing. The ignition time, which is defined as the time when a continuous flame is attached to the fuel surface, decreases, reaches a minimum, and then increases until ignition cannot occur. Mechanisms were considered to explain the ‘‘V-shaped” dependence of ignition time on flow-velocity, and two regimes were identified each having a different controlling mechanism: the mass transport regime where the ignition delay is controlled by the mixing of oxygen and pyrolyzate; and the heat transfer regime where the ignition delay is controlled by changes in convection heat losses and critical mass flux for ignition. With the decrease of the airflow velocity, the critical mass flux shows a trend of decreasing and then increasing, which is dominated by the mixing of the pyrolyzate and the oxidizer, while the critical temperature monotonically decreases, which is dominated by a reduction of the net heat flux at the fuel surface. The results provide further insight into the ignition behavior of solid fuel under low-velocity flow environment, and guidance about fire safety in microgravity environments.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on Pilot Ignition of a Thermally-Thick Solid Fuel with Low-Velocity Airflow in Microgravity\",\"authors\":\"Kai Zhang, Feng Zhu, Shuangfeng Wang\",\"doi\":\"10.1007/s12217-023-10092-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanisms controlling the dependence on low-velocity flow of the piloted ignition of a solid material under external radiant heating is investigated through a numerical modeling. The poly (methyl methacrylate) (PMMA) was used as the fuel. The objective of the present study is to gain insight into the intrinsic ignition mechanisms of a solid fuel, as well as to gain a more comprehensive understanding of the dynamical characteristics of the ignition process near the extinction limit. For this purpose, a two-dimensional numerical model has been developed using the Fire Dynamic Simulator (FDS5) code, in which both solid-phase and gas-phase reactions are calculated. Two radiant heat flux, which are 16 and 25 kW/m<sup>2</sup> were studied, and an external air flow was varied from 3 to 40 cm/s. The simulation results showed that transient gas reaction flashed before a continuous flame was attached to the sample surface for gas flow velocities lower than a critical value. As the flow velocity is reduced, the flashing time, which is defined as the time when any flame is seen above the sample surface, decreases, while the duration of flashing increases. The solid surface temperature and mass flow rate increase rapidly during flashing. The ignition time, which is defined as the time when a continuous flame is attached to the fuel surface, decreases, reaches a minimum, and then increases until ignition cannot occur. Mechanisms were considered to explain the ‘‘V-shaped” dependence of ignition time on flow-velocity, and two regimes were identified each having a different controlling mechanism: the mass transport regime where the ignition delay is controlled by the mixing of oxygen and pyrolyzate; and the heat transfer regime where the ignition delay is controlled by changes in convection heat losses and critical mass flux for ignition. With the decrease of the airflow velocity, the critical mass flux shows a trend of decreasing and then increasing, which is dominated by the mixing of the pyrolyzate and the oxidizer, while the critical temperature monotonically decreases, which is dominated by a reduction of the net heat flux at the fuel surface. The results provide further insight into the ignition behavior of solid fuel under low-velocity flow environment, and guidance about fire safety in microgravity environments.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10092-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10092-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Numerical Study on Pilot Ignition of a Thermally-Thick Solid Fuel with Low-Velocity Airflow in Microgravity
The mechanisms controlling the dependence on low-velocity flow of the piloted ignition of a solid material under external radiant heating is investigated through a numerical modeling. The poly (methyl methacrylate) (PMMA) was used as the fuel. The objective of the present study is to gain insight into the intrinsic ignition mechanisms of a solid fuel, as well as to gain a more comprehensive understanding of the dynamical characteristics of the ignition process near the extinction limit. For this purpose, a two-dimensional numerical model has been developed using the Fire Dynamic Simulator (FDS5) code, in which both solid-phase and gas-phase reactions are calculated. Two radiant heat flux, which are 16 and 25 kW/m2 were studied, and an external air flow was varied from 3 to 40 cm/s. The simulation results showed that transient gas reaction flashed before a continuous flame was attached to the sample surface for gas flow velocities lower than a critical value. As the flow velocity is reduced, the flashing time, which is defined as the time when any flame is seen above the sample surface, decreases, while the duration of flashing increases. The solid surface temperature and mass flow rate increase rapidly during flashing. The ignition time, which is defined as the time when a continuous flame is attached to the fuel surface, decreases, reaches a minimum, and then increases until ignition cannot occur. Mechanisms were considered to explain the ‘‘V-shaped” dependence of ignition time on flow-velocity, and two regimes were identified each having a different controlling mechanism: the mass transport regime where the ignition delay is controlled by the mixing of oxygen and pyrolyzate; and the heat transfer regime where the ignition delay is controlled by changes in convection heat losses and critical mass flux for ignition. With the decrease of the airflow velocity, the critical mass flux shows a trend of decreasing and then increasing, which is dominated by the mixing of the pyrolyzate and the oxidizer, while the critical temperature monotonically decreases, which is dominated by a reduction of the net heat flux at the fuel surface. The results provide further insight into the ignition behavior of solid fuel under low-velocity flow environment, and guidance about fire safety in microgravity environments.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology