四元分析中的 s 数概念和沙腾类

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
João Costa
{"title":"四元分析中的 s 数概念和沙腾类","authors":"João Costa","doi":"10.1007/s00006-023-01311-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce an axiomatic approach to the theory of s-numbers in quaternionic analysis. To this end, Pietsch’s approach to s-number theory is adapted to the quaternionic framework, following the works of Colombo and Sabadini on quaternionic spectral analysis. One of the main results of this paper is the uniqueness of s-numbers over quaternionic Hilbert spaces. Moreover, examples are given in the quaternionic framework together with the introduction of nuclear numbers. A consequence of the presented theory is a basis independent definition of the Schatten classes over quaternionic Hilbert and Banach spaces.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-023-01311-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Concept of s-Numbers in Quaternionic Analysis and Schatten Classes\",\"authors\":\"João Costa\",\"doi\":\"10.1007/s00006-023-01311-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we introduce an axiomatic approach to the theory of s-numbers in quaternionic analysis. To this end, Pietsch’s approach to s-number theory is adapted to the quaternionic framework, following the works of Colombo and Sabadini on quaternionic spectral analysis. One of the main results of this paper is the uniqueness of s-numbers over quaternionic Hilbert spaces. Moreover, examples are given in the quaternionic framework together with the introduction of nuclear numbers. A consequence of the presented theory is a basis independent definition of the Schatten classes over quaternionic Hilbert and Banach spaces.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-023-01311-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-023-01311-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01311-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了四元数分析中 s 数理论的公理化方法。为此,我们根据科伦坡和萨巴迪尼在四元数谱分析方面的研究成果,将皮耶希的 s 数理论方法调整到四元数框架中。本文的主要成果之一是四元希尔伯特空间上 s 数的唯一性。此外,本文还给出了四元数框架下的示例,并引入了核数。所提出的理论的一个结果是四元希尔伯特和巴拿赫空间上的夏顿类的独立于基础的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Concept of s-Numbers in Quaternionic Analysis and Schatten Classes

Concept of s-Numbers in Quaternionic Analysis and Schatten Classes

In this paper we introduce an axiomatic approach to the theory of s-numbers in quaternionic analysis. To this end, Pietsch’s approach to s-number theory is adapted to the quaternionic framework, following the works of Colombo and Sabadini on quaternionic spectral analysis. One of the main results of this paper is the uniqueness of s-numbers over quaternionic Hilbert spaces. Moreover, examples are given in the quaternionic framework together with the introduction of nuclear numbers. A consequence of the presented theory is a basis independent definition of the Schatten classes over quaternionic Hilbert and Banach spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信