客座编辑 动态神经-人工智能学习系统:设备、电路、架构和算法

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jason K. Eshraghian;Arindam Basu;Corey Lammie;Shih-Chii Liu;Priydarshini Panda
{"title":"客座编辑 动态神经-人工智能学习系统:设备、电路、架构和算法","authors":"Jason K. Eshraghian;Arindam Basu;Corey Lammie;Shih-Chii Liu;Priydarshini Panda","doi":"10.1109/JETCAS.2023.3343932","DOIUrl":null,"url":null,"abstract":"This Special Issue of IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) is dedicated to demonstrating the latest research progress on dynamical neuro-artificial intelligence (AI) learning systems that bridge the gap between devices, circuits, architectures, and algorithms. The growing demand for AI has spurred the development of systems that: 1) co-localize computation and memory; 2) enhance circuits and devices optimized for operations prevalent in deep learning; and 3) implement lightweight and compressed machine learning models thereby achieving greater accuracy with less resources.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"13 4","pages":"873-876"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375873","citationCount":"0","resultStr":"{\"title\":\"Guest Editorial Dynamical Neuro-AI Learning Systems: Devices, Circuits, Architecture and Algorithms\",\"authors\":\"Jason K. Eshraghian;Arindam Basu;Corey Lammie;Shih-Chii Liu;Priydarshini Panda\",\"doi\":\"10.1109/JETCAS.2023.3343932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Special Issue of IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) is dedicated to demonstrating the latest research progress on dynamical neuro-artificial intelligence (AI) learning systems that bridge the gap between devices, circuits, architectures, and algorithms. The growing demand for AI has spurred the development of systems that: 1) co-localize computation and memory; 2) enhance circuits and devices optimized for operations prevalent in deep learning; and 3) implement lightweight and compressed machine learning models thereby achieving greater accuracy with less resources.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"13 4\",\"pages\":\"873-876\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375873\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375873/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375873/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本期《IEEE 电路与系统新兴选题期刊》(JETCAS)特刊致力于展示动态神经人工智能(AI)学习系统的最新研究进展,这些系统是设备、电路、架构和算法之间的桥梁。对人工智能日益增长的需求推动了以下系统的发展:1)共同定位计算和内存;2)增强针对深度学习中普遍存在的操作进行优化的电路和设备;3)实施轻量级压缩机器学习模型,从而以更少的资源实现更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guest Editorial Dynamical Neuro-AI Learning Systems: Devices, Circuits, Architecture and Algorithms
This Special Issue of IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) is dedicated to demonstrating the latest research progress on dynamical neuro-artificial intelligence (AI) learning systems that bridge the gap between devices, circuits, architectures, and algorithms. The growing demand for AI has spurred the development of systems that: 1) co-localize computation and memory; 2) enhance circuits and devices optimized for operations prevalent in deep learning; and 3) implement lightweight and compressed machine learning models thereby achieving greater accuracy with less resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信