[疾病临床过程的数字表达。 数据管理]。

Juan Osvaldo Talavera, Ivonne Roy-García, Sofía Teresa Díaz-Torres, Lino Palacios-Cruz, Alejandro Noguez-Ramos, Marcela Pérez-Rodríguez, Miguel Ángel Martínez, Jessica E Silva-Guzmán, Rodolfo Rivas-Ruiz
{"title":"[疾病临床过程的数字表达。 数据管理]。","authors":"Juan Osvaldo Talavera, Ivonne Roy-García, Sofía Teresa Díaz-Torres, Lino Palacios-Cruz, Alejandro Noguez-Ramos, Marcela Pérez-Rodríguez, Miguel Ángel Martínez, Jessica E Silva-Guzmán, Rodolfo Rivas-Ruiz","doi":"10.5281/zenodo.8319834","DOIUrl":null,"url":null,"abstract":"<p><p>Data management \"behind the scenes\" refers to collection, cleaning, imputation, and demarcation; and despite of being indispensable processes, they are usually neglected and thus, generate erroneous information. During the collection are errors: omission of covariates, deviation from the objective, and insufficient quality. The omission of covariates distorts the result attributed to the main manoeuvre. Deviation from the primary objective commonly occurs when the outcome is rare, delayed, or subjective and promotes substitution by non-equivalent surrogate variables. Moreover, insufficient quality occurs due to inadequate instruments, omission of the measurement procedure, or measurements out of context, such as attribution at the wrong time or equivalent. Furthermore, cleaning implies identifying erroneous, extreme, and missing values, which may or may not be imputed, depending on the percentage. The values of the manoeuvre or the outcome are never imputed, nor are patients eliminated due to a lack of values. Finally, the demarcation of each variable seeks to give it a clinical meaning about the outcome, for which a hierarchical sequence of criteria is followed: 1) previous clinical study, 2) expert agreement, 3) clinical judgment of the investigator/investigators, and 4) statistics. Acting without quality controls in data management frequently causes involuntary lies and confuses instead of clarifying.</p>","PeriodicalId":94200,"journal":{"name":"Revista medica del Instituto Mexicano del Seguro Social","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756149/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Numerical expression of the clinical course of the disease. Data management].\",\"authors\":\"Juan Osvaldo Talavera, Ivonne Roy-García, Sofía Teresa Díaz-Torres, Lino Palacios-Cruz, Alejandro Noguez-Ramos, Marcela Pérez-Rodríguez, Miguel Ángel Martínez, Jessica E Silva-Guzmán, Rodolfo Rivas-Ruiz\",\"doi\":\"10.5281/zenodo.8319834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data management \\\"behind the scenes\\\" refers to collection, cleaning, imputation, and demarcation; and despite of being indispensable processes, they are usually neglected and thus, generate erroneous information. During the collection are errors: omission of covariates, deviation from the objective, and insufficient quality. The omission of covariates distorts the result attributed to the main manoeuvre. Deviation from the primary objective commonly occurs when the outcome is rare, delayed, or subjective and promotes substitution by non-equivalent surrogate variables. Moreover, insufficient quality occurs due to inadequate instruments, omission of the measurement procedure, or measurements out of context, such as attribution at the wrong time or equivalent. Furthermore, cleaning implies identifying erroneous, extreme, and missing values, which may or may not be imputed, depending on the percentage. The values of the manoeuvre or the outcome are never imputed, nor are patients eliminated due to a lack of values. Finally, the demarcation of each variable seeks to give it a clinical meaning about the outcome, for which a hierarchical sequence of criteria is followed: 1) previous clinical study, 2) expert agreement, 3) clinical judgment of the investigator/investigators, and 4) statistics. Acting without quality controls in data management frequently causes involuntary lies and confuses instead of clarifying.</p>\",\"PeriodicalId\":94200,\"journal\":{\"name\":\"Revista medica del Instituto Mexicano del Seguro Social\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756149/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista medica del Instituto Mexicano del Seguro Social\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/zenodo.8319834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista medica del Instituto Mexicano del Seguro Social","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.8319834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

幕后 "数据管理指的是收集、清理、估算和划分;尽管这些过程不可或缺,但通常会被忽视,从而产生错误信息。收集过程中的错误包括:遗漏协变量、偏离目标和质量不高。遗漏协变量会扭曲归因于主要操作的结果。偏离主要目标通常发生在结果罕见、延迟或主观的情况下,并会被非等效替代变量所替代。此外,由于工具不足、测量程序遗漏或测量结果脱离背景,如归因于错误的时间或等价物,也会导致质量不高。此外,清理意味着要找出错误值、极端值和缺失值,根据百分比的不同,可能会也可能不会对其进行估算。操作或结果的数值永远不会被估算,患者也不会因为缺少数值而被剔除。最后,每个变量的划分都是为了赋予其与结果相关的临床意义,为此要遵循一系列分层标准:1) 以前的临床研究;2) 专家共识;3) 研究者的临床判断;4) 统计数据。在数据管理方面缺乏质量控制的行为经常会造成不自觉的谎言,使人困惑,而不是澄清。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Numerical expression of the clinical course of the disease. Data management].

Data management "behind the scenes" refers to collection, cleaning, imputation, and demarcation; and despite of being indispensable processes, they are usually neglected and thus, generate erroneous information. During the collection are errors: omission of covariates, deviation from the objective, and insufficient quality. The omission of covariates distorts the result attributed to the main manoeuvre. Deviation from the primary objective commonly occurs when the outcome is rare, delayed, or subjective and promotes substitution by non-equivalent surrogate variables. Moreover, insufficient quality occurs due to inadequate instruments, omission of the measurement procedure, or measurements out of context, such as attribution at the wrong time or equivalent. Furthermore, cleaning implies identifying erroneous, extreme, and missing values, which may or may not be imputed, depending on the percentage. The values of the manoeuvre or the outcome are never imputed, nor are patients eliminated due to a lack of values. Finally, the demarcation of each variable seeks to give it a clinical meaning about the outcome, for which a hierarchical sequence of criteria is followed: 1) previous clinical study, 2) expert agreement, 3) clinical judgment of the investigator/investigators, and 4) statistics. Acting without quality controls in data management frequently causes involuntary lies and confuses instead of clarifying.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信