{"title":"超可溶群上 Cayley 图中的无处零 3 流","authors":"Junyang Zhang , Sanming Zhou","doi":"10.1016/j.jcta.2023.105852","DOIUrl":null,"url":null,"abstract":"<div><p>Tutte's 3-flow conjecture asserts that every 4-edge-connected graph admits a nowhere-zero 3-flow. We prove that this conjecture is true for every Cayley graph of valency at least four on any supersolvable group with a noncyclic Sylow 2-subgroup and every Cayley graph of valency at least four on any group whose derived subgroup is of square-free order.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105852"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nowhere-zero 3-flows in Cayley graphs on supersolvable groups\",\"authors\":\"Junyang Zhang , Sanming Zhou\",\"doi\":\"10.1016/j.jcta.2023.105852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tutte's 3-flow conjecture asserts that every 4-edge-connected graph admits a nowhere-zero 3-flow. We prove that this conjecture is true for every Cayley graph of valency at least four on any supersolvable group with a noncyclic Sylow 2-subgroup and every Cayley graph of valency at least four on any group whose derived subgroup is of square-free order.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"204 \",\"pages\":\"Article 105852\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523001206\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001206","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nowhere-zero 3-flows in Cayley graphs on supersolvable groups
Tutte's 3-flow conjecture asserts that every 4-edge-connected graph admits a nowhere-zero 3-flow. We prove that this conjecture is true for every Cayley graph of valency at least four on any supersolvable group with a noncyclic Sylow 2-subgroup and every Cayley graph of valency at least four on any group whose derived subgroup is of square-free order.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.