{"title":"δ阿片受体激动剂KNT-127通过抑制从边缘前皮层到杏仁核基底外侧的传导,缓解了小鼠的先天焦虑样行为。","authors":"Ayako Kawaminami, Daisuke Yamada, Toshinori Yoshioka, Azumi Hatakeyama, Moeno Nishida, Keita Kajino, Tsuyoshi Saitoh, Hiroshi Nagase, Akiyoshi Saitoh","doi":"10.1002/npr2.12406","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Excitatory projections from the prelimbic cortex (PL) to the basolateral nucleus of the amygdala (BLA) are implicated in the regulation of anxiety-like behaviors, and we previously demonstrated that anxiolytic-like effects of the selective delta-opioid receptor (DOP) agonist KNT-127 is involved in suppressing glutamate neurotransmission in the PL. Here, we investigated the mechanisms underlying the anxiolytic-like effect of KNT-127 in mice by combining optogenetic stimulation of the PL-BLA pathway with behavioral analyses.</p><p><strong>Methods: </strong>Four-week-old male C57BL/6J mice received bilateral administration of adeno-associated virus (AAV)2-CaMKIIa-hChR2(H134R)-enhanced yellow fluorescent protein (EYFP) into the PL to induce expression of the light-activated excitatory ionic channel ChR2. Subsequently, an optic fiber cannula connected to a wireless photo-stimulator was implanted into the BLA for optogenetic PL-BLA pathway stimulation. We evaluated innate anxiety using the elevated plus maze (EPM) and open field (OF) tests as well as learned anxiety using the contextual fear conditioning (CFC) test.</p><p><strong>Results: </strong>Optogenetic activation of the PL-BLA pathway enhanced anxiety-like behaviors in the EPM and OF, while prior subcutaneous administration of KNT-127 (10 mg/kg) reduced this anxiogenic effect. In contrast, optogenetic activation of the PL-BLA pathway had no significant effect on conditioned fear.</p><p><strong>Conclusion: </strong>Our findings indicate that the PL-BLA circuit contributes to innate anxiety and that the anxiolytic-like effects of KNT-127 are mediated at least in part by suppression of PL-BLA transmission. The PL delta-opioid receptor may thus be an effective therapeutic target for anxiety disorders.</p>","PeriodicalId":19137,"journal":{"name":"Neuropsychopharmacology Reports","volume":" ","pages":"256-261"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932786/pdf/","citationCount":"0","resultStr":"{\"title\":\"The delta opioid receptor agonist KNT-127 relieves innate anxiety-like behavior in mice by suppressing transmission from the prelimbic cortex to basolateral amygdala.\",\"authors\":\"Ayako Kawaminami, Daisuke Yamada, Toshinori Yoshioka, Azumi Hatakeyama, Moeno Nishida, Keita Kajino, Tsuyoshi Saitoh, Hiroshi Nagase, Akiyoshi Saitoh\",\"doi\":\"10.1002/npr2.12406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Excitatory projections from the prelimbic cortex (PL) to the basolateral nucleus of the amygdala (BLA) are implicated in the regulation of anxiety-like behaviors, and we previously demonstrated that anxiolytic-like effects of the selective delta-opioid receptor (DOP) agonist KNT-127 is involved in suppressing glutamate neurotransmission in the PL. Here, we investigated the mechanisms underlying the anxiolytic-like effect of KNT-127 in mice by combining optogenetic stimulation of the PL-BLA pathway with behavioral analyses.</p><p><strong>Methods: </strong>Four-week-old male C57BL/6J mice received bilateral administration of adeno-associated virus (AAV)2-CaMKIIa-hChR2(H134R)-enhanced yellow fluorescent protein (EYFP) into the PL to induce expression of the light-activated excitatory ionic channel ChR2. Subsequently, an optic fiber cannula connected to a wireless photo-stimulator was implanted into the BLA for optogenetic PL-BLA pathway stimulation. We evaluated innate anxiety using the elevated plus maze (EPM) and open field (OF) tests as well as learned anxiety using the contextual fear conditioning (CFC) test.</p><p><strong>Results: </strong>Optogenetic activation of the PL-BLA pathway enhanced anxiety-like behaviors in the EPM and OF, while prior subcutaneous administration of KNT-127 (10 mg/kg) reduced this anxiogenic effect. In contrast, optogenetic activation of the PL-BLA pathway had no significant effect on conditioned fear.</p><p><strong>Conclusion: </strong>Our findings indicate that the PL-BLA circuit contributes to innate anxiety and that the anxiolytic-like effects of KNT-127 are mediated at least in part by suppression of PL-BLA transmission. The PL delta-opioid receptor may thus be an effective therapeutic target for anxiety disorders.</p>\",\"PeriodicalId\":19137,\"journal\":{\"name\":\"Neuropsychopharmacology Reports\",\"volume\":\" \",\"pages\":\"256-261\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychopharmacology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/npr2.12406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/npr2.12406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The delta opioid receptor agonist KNT-127 relieves innate anxiety-like behavior in mice by suppressing transmission from the prelimbic cortex to basolateral amygdala.
Aim: Excitatory projections from the prelimbic cortex (PL) to the basolateral nucleus of the amygdala (BLA) are implicated in the regulation of anxiety-like behaviors, and we previously demonstrated that anxiolytic-like effects of the selective delta-opioid receptor (DOP) agonist KNT-127 is involved in suppressing glutamate neurotransmission in the PL. Here, we investigated the mechanisms underlying the anxiolytic-like effect of KNT-127 in mice by combining optogenetic stimulation of the PL-BLA pathway with behavioral analyses.
Methods: Four-week-old male C57BL/6J mice received bilateral administration of adeno-associated virus (AAV)2-CaMKIIa-hChR2(H134R)-enhanced yellow fluorescent protein (EYFP) into the PL to induce expression of the light-activated excitatory ionic channel ChR2. Subsequently, an optic fiber cannula connected to a wireless photo-stimulator was implanted into the BLA for optogenetic PL-BLA pathway stimulation. We evaluated innate anxiety using the elevated plus maze (EPM) and open field (OF) tests as well as learned anxiety using the contextual fear conditioning (CFC) test.
Results: Optogenetic activation of the PL-BLA pathway enhanced anxiety-like behaviors in the EPM and OF, while prior subcutaneous administration of KNT-127 (10 mg/kg) reduced this anxiogenic effect. In contrast, optogenetic activation of the PL-BLA pathway had no significant effect on conditioned fear.
Conclusion: Our findings indicate that the PL-BLA circuit contributes to innate anxiety and that the anxiolytic-like effects of KNT-127 are mediated at least in part by suppression of PL-BLA transmission. The PL delta-opioid receptor may thus be an effective therapeutic target for anxiety disorders.