Wenqiang Zhang, Qiwei Nie, Xuling Zhang, Long Huang, Guofu Pang, Jing Chu, Xiaoxu Yuan
{"title":"通过 EZH2 沉默恢复 miR-26a-5p 可阻断 IL-6/STAT3 轴,从而抑制前列腺癌的生长。","authors":"Wenqiang Zhang, Qiwei Nie, Xuling Zhang, Long Huang, Guofu Pang, Jing Chu, Xiaoxu Yuan","doi":"10.1080/14728222.2023.2293750","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis.</p><p><strong>Research design & methods: </strong>Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships.</p><p><strong>Results: </strong>Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis.</p><p><strong>Conclusion: </strong>EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-26a-5p restoration <i>via</i> EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer.\",\"authors\":\"Wenqiang Zhang, Qiwei Nie, Xuling Zhang, Long Huang, Guofu Pang, Jing Chu, Xiaoxu Yuan\",\"doi\":\"10.1080/14728222.2023.2293750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis.</p><p><strong>Research design & methods: </strong>Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships.</p><p><strong>Results: </strong>Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis.</p><p><strong>Conclusion: </strong>EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.</p>\",\"PeriodicalId\":12185,\"journal\":{\"name\":\"Expert Opinion on Therapeutic Targets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Therapeutic Targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14728222.2023.2293750\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2023.2293750","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer.
Background: Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis.
Research design & methods: Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships.
Results: Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis.
Conclusion: EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.