激光表面纹理可增强正畸托槽的摩擦和磨损性能

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Kai Zhou, Zonglin Pan, Xin Luo, Ping Yang, Pengfei Wang
{"title":"激光表面纹理可增强正畸托槽的摩擦和磨损性能","authors":"Kai Zhou,&nbsp;Zonglin Pan,&nbsp;Xin Luo,&nbsp;Ping Yang,&nbsp;Pengfei Wang","doi":"10.1002/ls.1682","DOIUrl":null,"url":null,"abstract":"<p>Minimising the friction force of the archwire-bracket sliding contact is crucial for achieving a high-quality orthodontic treatment. Micro-dimples and micro-grooves textures were successfully produced on the two slot surfaces of the stainless steel orthodontic brackets with the laser surface texturing technology. The effect of surface texture on reducing the friction and wear behaviour of the stainless steel archwire-bracket sliding contact combinations in artificial saliva environment was investigated. Friction coefficients of less than 0.15 and mild wear were obtained by using the three rows micro-grooves textured bracket with a width of 60 μm and a spacing of 150 μm. The friction and wear performance was further enhanced with the addition of orthodontic wax materials. It was strongly argued that the synergetic effects of the fabricated micro-grooves texture and the added orthodontic wax materials leading to the outstanding friction and wear behaviour of the archwire-bracket sliding contacts.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 2","pages":"135-148"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser surface textures enhance the friction and wear behaviour of orthodontic brackets\",\"authors\":\"Kai Zhou,&nbsp;Zonglin Pan,&nbsp;Xin Luo,&nbsp;Ping Yang,&nbsp;Pengfei Wang\",\"doi\":\"10.1002/ls.1682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Minimising the friction force of the archwire-bracket sliding contact is crucial for achieving a high-quality orthodontic treatment. Micro-dimples and micro-grooves textures were successfully produced on the two slot surfaces of the stainless steel orthodontic brackets with the laser surface texturing technology. The effect of surface texture on reducing the friction and wear behaviour of the stainless steel archwire-bracket sliding contact combinations in artificial saliva environment was investigated. Friction coefficients of less than 0.15 and mild wear were obtained by using the three rows micro-grooves textured bracket with a width of 60 μm and a spacing of 150 μm. The friction and wear performance was further enhanced with the addition of orthodontic wax materials. It was strongly argued that the synergetic effects of the fabricated micro-grooves texture and the added orthodontic wax materials leading to the outstanding friction and wear behaviour of the archwire-bracket sliding contacts.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"36 2\",\"pages\":\"135-148\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1682\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1682","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

最大限度地降低弓丝与托槽滑动接触的摩擦力对于实现高质量的正畸治疗至关重要。利用激光表面纹理加工技术,成功地在不锈钢正畸托槽的两个槽面上制作出了微凹坑和微沟槽纹理。研究了表面纹理对降低不锈钢弓丝-托槽滑动接触组合在人工唾液环境中的摩擦和磨损行为的影响。通过使用宽度为 60 μm、间距为 150 μm 的三排微凹槽纹理支架,获得了小于 0.15 的摩擦系数和轻度磨损。加入正畸蜡材料后,摩擦和磨损性能进一步提高。有充分的理由认为,制作的微槽纹理和添加的正畸蜡材料的协同作用导致了弓丝-托槽滑动接触的出色的摩擦和磨损性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser surface textures enhance the friction and wear behaviour of orthodontic brackets

Minimising the friction force of the archwire-bracket sliding contact is crucial for achieving a high-quality orthodontic treatment. Micro-dimples and micro-grooves textures were successfully produced on the two slot surfaces of the stainless steel orthodontic brackets with the laser surface texturing technology. The effect of surface texture on reducing the friction and wear behaviour of the stainless steel archwire-bracket sliding contact combinations in artificial saliva environment was investigated. Friction coefficients of less than 0.15 and mild wear were obtained by using the three rows micro-grooves textured bracket with a width of 60 μm and a spacing of 150 μm. The friction and wear performance was further enhanced with the addition of orthodontic wax materials. It was strongly argued that the synergetic effects of the fabricated micro-grooves texture and the added orthodontic wax materials leading to the outstanding friction and wear behaviour of the archwire-bracket sliding contacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信