{"title":"通过 CRISPR/Cas9 双系统在黄曲霉菌中创建大染色体片段缺失:缺失生产黄曲霉毒素、环霞糠酸和ustiloxin B 的基因簇","authors":"Perng-Kuang Chang","doi":"10.1016/j.fgb.2023.103863","DOIUrl":null,"url":null,"abstract":"<div><p><em>Aspergillus flavus</em> produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic <em>A. flavus</em> isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of <em>A. flavus</em> gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic <em>A. flavus</em> morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural <em>A. flavus</em> isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1087184523000944/pdfft?md5=07e0850522dfb1bfca59fceadd36aa1f&pid=1-s2.0-S1087184523000944-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B\",\"authors\":\"Perng-Kuang Chang\",\"doi\":\"10.1016/j.fgb.2023.103863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Aspergillus flavus</em> produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic <em>A. flavus</em> isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of <em>A. flavus</em> gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic <em>A. flavus</em> morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural <em>A. flavus</em> isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1087184523000944/pdfft?md5=07e0850522dfb1bfca59fceadd36aa1f&pid=1-s2.0-S1087184523000944-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184523000944\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184523000944","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
黄曲霉会产生致肝癌的黄曲霉毒素,对人类和动物健康以及国际贸易造成不利影响。管理农作物收获前黄曲霉毒素污染的一种可行方法是生物防治,即利用具有黄曲霉毒素基因簇缺陷的非致病黄曲霉分离株来淘汰田间致毒种群。然而,这些分离物往往会产生其他有毒代谢物。CRISPR/Cas9 技术大大推进了基因组编辑和基因功能研究。但将其用于删除丝状真菌的大染色体片段却鲜有报道。研究人员建立了一个双 CRISPR/Cas9 与 60 核苷酸供体 DNA 结合的系统,该系统可以删除黄曲霉基因簇,这些基因簇参与产生有害的特殊代谢物。它有效地删除了含有黄曲霉毒素和环淀粉酸基因簇的 102 kb 区段,这些基因簇来自黄曲霉毒素致毒形态 L 型和 S 型。它还进一步删除了由此产生的 L 型突变体的 27-kb ustiloxin B 基因簇。总体缺失效率为 66.6% 至 85.6%,由单个供体 DNA 拷贝修复的缺失效率为 50.5% 至 72.7%。为了确定这种技术的能力,我们设计了一种基于天门冬氨酸基因簇缺失的色素筛选装置。删除了 201 kb 和 301 kb 的染色体片段,效率分别为 57.7% 至 69.2%。该系统使用天然黄曲霉分离株作为受体,省去了为下一轮删除产生受体的强制回收步骤,并产生了由供体DNA预设序列的无制造者删除体。这项研究提供了一种方法,可用于创建真正的毒性生物控制菌株,以便于田间试验释放。
Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B
Aspergillus flavus produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic A. flavus isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of A. flavus gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic A. flavus morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural A. flavus isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.