Edoardo Fadda, Evelina Di Corso, Davide Brusco, Vlad Stefan Aelenei, Alexandru Balan Rares
{"title":"自适应预算影响最大化问题的数学强化学习","authors":"Edoardo Fadda, Evelina Di Corso, Davide Brusco, Vlad Stefan Aelenei, Alexandru Balan Rares","doi":"10.1002/net.22206","DOIUrl":null,"url":null,"abstract":"In social networks, the influence maximization problem requires selecting an initial set of nodes to influence so that the spread of influence can reach its maximum under certain diffusion models. Usually, the problem is formulated in a two-stage un-budgeted fashion: The decision maker selects a given number of nodes to influence and observes the results. In the adaptive version of the problem, it is possible to select the nodes at each time step of a given time interval. This allows the decision-maker to exploit the observation of the propagation and to make better decisions. This paper considers the adaptive budgeted influence maximization problem, that is, the adaptive problem in which the decision maker has a finite budget to influence the nodes, and each node requires a cost to be influenced. We present two solution techniques: The first is an approximated value iteration leveraging mixed integer linear problems while the second exploits new concepts from graph neural networks. Extensive numerical experiments demonstrate the effectiveness of the proposed approaches.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"45 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Math-based reinforcement learning for the adaptive budgeted influence maximization problem\",\"authors\":\"Edoardo Fadda, Evelina Di Corso, Davide Brusco, Vlad Stefan Aelenei, Alexandru Balan Rares\",\"doi\":\"10.1002/net.22206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In social networks, the influence maximization problem requires selecting an initial set of nodes to influence so that the spread of influence can reach its maximum under certain diffusion models. Usually, the problem is formulated in a two-stage un-budgeted fashion: The decision maker selects a given number of nodes to influence and observes the results. In the adaptive version of the problem, it is possible to select the nodes at each time step of a given time interval. This allows the decision-maker to exploit the observation of the propagation and to make better decisions. This paper considers the adaptive budgeted influence maximization problem, that is, the adaptive problem in which the decision maker has a finite budget to influence the nodes, and each node requires a cost to be influenced. We present two solution techniques: The first is an approximated value iteration leveraging mixed integer linear problems while the second exploits new concepts from graph neural networks. Extensive numerical experiments demonstrate the effectiveness of the proposed approaches.\",\"PeriodicalId\":54734,\"journal\":{\"name\":\"Networks\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/net.22206\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22206","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Math-based reinforcement learning for the adaptive budgeted influence maximization problem
In social networks, the influence maximization problem requires selecting an initial set of nodes to influence so that the spread of influence can reach its maximum under certain diffusion models. Usually, the problem is formulated in a two-stage un-budgeted fashion: The decision maker selects a given number of nodes to influence and observes the results. In the adaptive version of the problem, it is possible to select the nodes at each time step of a given time interval. This allows the decision-maker to exploit the observation of the propagation and to make better decisions. This paper considers the adaptive budgeted influence maximization problem, that is, the adaptive problem in which the decision maker has a finite budget to influence the nodes, and each node requires a cost to be influenced. We present two solution techniques: The first is an approximated value iteration leveraging mixed integer linear problems while the second exploits new concepts from graph neural networks. Extensive numerical experiments demonstrate the effectiveness of the proposed approaches.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.