Haruna Abdulbakee Muhammed, Dr. Mohammad Shahadat, Saleh Ali Tweib, Dr. Shehu Sa'ad Abdullahi, Dr. Mohammad Amir Qureshi, Dr. Yahaya Abdulrazaq, Dr. Abdullahi Haruna Birniwa, Dr. Ajaz Ahmad Wani, Dr. Ahmad Hussaini Jagaba, Dr. Rania Edrees Adam Mohammad, Dr. Mohd R. Razali, Dr. Saleh O. Alaswad
{"title":"利用聚合物混合水凝胶收集大气中的水","authors":"Haruna Abdulbakee Muhammed, Dr. Mohammad Shahadat, Saleh Ali Tweib, Dr. Shehu Sa'ad Abdullahi, Dr. Mohammad Amir Qureshi, Dr. Yahaya Abdulrazaq, Dr. Abdullahi Haruna Birniwa, Dr. Ajaz Ahmad Wani, Dr. Ahmad Hussaini Jagaba, Dr. Rania Edrees Adam Mohammad, Dr. Mohd R. Razali, Dr. Saleh O. Alaswad","doi":"10.1002/cben.202300032","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric water harvesting (AWH) is an important parallel or supplemental freshwater production technique to liquid water resource-based technologies due to the availability of moisture resources regardless of location and the possibility of realizing decentralized applications. Recent developments to regulate the characteristic features and nanostructures of moisture-harvesting materials demonstrate new opportunities to improve device efficiency. Focusing on the design of water harvesting materials and the optimization of the overall system, this review sums up the most recent developments in this area and presents prospects for the future development of AWH. An overview of the processes involved in water sorption by various sorbents and the characteristics and functionality of the polyaniline-based hydrogels developed for AWH is given. Newly reported hydrogel sorbents used for AWH are evaluated, focusing on their benefits, drawbacks, and design methodologies. Several AWH-specific water harvesters are described and the impact of the system's mass and heat transfer on its operational effectiveness is explored. Finally, potential roadmaps for the development of this technology are detailed and the challenges in this subject from both a basic research and practical application perspective are discussed.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"197-214"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harvesting of Atmospheric Water Using Polymer-Based Hybrid Hydrogels\",\"authors\":\"Haruna Abdulbakee Muhammed, Dr. Mohammad Shahadat, Saleh Ali Tweib, Dr. Shehu Sa'ad Abdullahi, Dr. Mohammad Amir Qureshi, Dr. Yahaya Abdulrazaq, Dr. Abdullahi Haruna Birniwa, Dr. Ajaz Ahmad Wani, Dr. Ahmad Hussaini Jagaba, Dr. Rania Edrees Adam Mohammad, Dr. Mohd R. Razali, Dr. Saleh O. Alaswad\",\"doi\":\"10.1002/cben.202300032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric water harvesting (AWH) is an important parallel or supplemental freshwater production technique to liquid water resource-based technologies due to the availability of moisture resources regardless of location and the possibility of realizing decentralized applications. Recent developments to regulate the characteristic features and nanostructures of moisture-harvesting materials demonstrate new opportunities to improve device efficiency. Focusing on the design of water harvesting materials and the optimization of the overall system, this review sums up the most recent developments in this area and presents prospects for the future development of AWH. An overview of the processes involved in water sorption by various sorbents and the characteristics and functionality of the polyaniline-based hydrogels developed for AWH is given. Newly reported hydrogel sorbents used for AWH are evaluated, focusing on their benefits, drawbacks, and design methodologies. Several AWH-specific water harvesters are described and the impact of the system's mass and heat transfer on its operational effectiveness is explored. Finally, potential roadmaps for the development of this technology are detailed and the challenges in this subject from both a basic research and practical application perspective are discussed.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 2\",\"pages\":\"197-214\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300032\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Harvesting of Atmospheric Water Using Polymer-Based Hybrid Hydrogels
Atmospheric water harvesting (AWH) is an important parallel or supplemental freshwater production technique to liquid water resource-based technologies due to the availability of moisture resources regardless of location and the possibility of realizing decentralized applications. Recent developments to regulate the characteristic features and nanostructures of moisture-harvesting materials demonstrate new opportunities to improve device efficiency. Focusing on the design of water harvesting materials and the optimization of the overall system, this review sums up the most recent developments in this area and presents prospects for the future development of AWH. An overview of the processes involved in water sorption by various sorbents and the characteristics and functionality of the polyaniline-based hydrogels developed for AWH is given. Newly reported hydrogel sorbents used for AWH are evaluated, focusing on their benefits, drawbacks, and design methodologies. Several AWH-specific water harvesters are described and the impact of the system's mass and heat transfer on its operational effectiveness is explored. Finally, potential roadmaps for the development of this technology are detailed and the challenges in this subject from both a basic research and practical application perspective are discussed.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,