{"title":"分数色度数的新特征值约束","authors":"Krystal Guo, Sam Spiro","doi":"10.1002/jgt.23071","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, we let <math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mo>+</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${s}^{+}(G)$</annotation>\n </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and we similarly define <math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mo>−</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${s}^{-}(G)$</annotation>\n </semantics></math>. We prove that\n\n </p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 1","pages":"167-181"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071","citationCount":"0","resultStr":"{\"title\":\"New eigenvalue bound for the fractional chromatic number\",\"authors\":\"Krystal Guo, Sam Spiro\",\"doi\":\"10.1002/jgt.23071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, we let <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>s</mi>\\n <mo>+</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${s}^{+}(G)$</annotation>\\n </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and we similarly define <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>s</mi>\\n <mo>−</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${s}^{-}(G)$</annotation>\\n </semantics></math>. We prove that\\n\\n </p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 1\",\"pages\":\"167-181\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .