分数色度数的新特征值约束

Pub Date : 2023-12-27 DOI:10.1002/jgt.23071
Krystal Guo, Sam Spiro
{"title":"分数色度数的新特征值约束","authors":"Krystal Guo,&nbsp;Sam Spiro","doi":"10.1002/jgt.23071","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, we let <math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mo>+</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${s}^{+}(G)$</annotation>\n </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and we similarly define <math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mo>−</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${s}^{-}(G)$</annotation>\n </semantics></math>. We prove that\n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071","citationCount":"0","resultStr":"{\"title\":\"New eigenvalue bound for the fractional chromatic number\",\"authors\":\"Krystal Guo,&nbsp;Sam Spiro\",\"doi\":\"10.1002/jgt.23071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, we let <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>s</mi>\\n <mo>+</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${s}^{+}(G)$</annotation>\\n </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and we similarly define <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>s</mi>\\n <mo>−</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${s}^{-}(G)$</annotation>\\n </semantics></math>. We prove that\\n\\n </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图 G$G$,我们让 s+(G)${s}^{+}(G)$ 表示 G$G$ 的邻接矩阵正特征值的平方和,我们同样定义 s-(G)${s}^{-}(G)$。我们证明
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New eigenvalue bound for the fractional chromatic number

分享
查看原文
New eigenvalue bound for the fractional chromatic number

Given a graph G $G$ , we let s + ( G ) ${s}^{+}(G)$ denote the sum of the squares of the positive eigenvalues of the adjacency matrix of G $G$ , and we similarly define s ( G ) ${s}^{-}(G)$ . We prove that

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信