G. I. Gorchakov, V. M. Kopeikin, R. A. Gushchin, A. V. Karpov, E. G. Semoutnikova, O. I. Datsenko, T. Ya. Ponomareva
{"title":"2019 年 7-8 月阿拉斯加森林火灾期间烟雾气溶胶的异常选择性吸收","authors":"G. I. Gorchakov, V. M. Kopeikin, R. A. Gushchin, A. V. Karpov, E. G. Semoutnikova, O. I. Datsenko, T. Ya. Ponomareva","doi":"10.1134/s000143382306004x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>According to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an Ångström exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to –0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"79 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Selective Absorption of Smoke Aerosol during Forest Fires in Alaska in July–August 2019\",\"authors\":\"G. I. Gorchakov, V. M. Kopeikin, R. A. Gushchin, A. V. Karpov, E. G. Semoutnikova, O. I. Datsenko, T. Ya. Ponomareva\",\"doi\":\"10.1134/s000143382306004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>According to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an Ångström exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to –0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s000143382306004x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s000143382306004x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Anomalous Selective Absorption of Smoke Aerosol during Forest Fires in Alaska in July–August 2019
Abstract
According to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an Ångström exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to –0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.
期刊介绍:
Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.