非线性贝尔特拉米方程:施瓦茨两难类型的下限估计值

Igor Petkov, Ruslan Salimov, Mariia Stefanchuk
{"title":"非线性贝尔特拉米方程:施瓦茨两难类型的下限估计值","authors":"Igor Petkov, Ruslan Salimov, Mariia Stefanchuk","doi":"10.4153/s0008439523000942","DOIUrl":null,"url":null,"abstract":"<p>We study a nonlinear Beltrami equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f_\\theta =\\sigma \\,|f_r|^m f_r$</span></span></img></span></span> in polar coordinates <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(r,\\theta ),$</span></span></img></span></span> which becomes the classical Cauchy–Riemann system under <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$m=0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\sigma =ir.$</span></span></img></span></span> Using the isoperimetric technique, various lower estimates for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$|f(z)|/|z|, f(0)=0,$</span></span></img></span></span> as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$z\\to 0,$</span></span></img></span></span> are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Beltrami equation: lower estimates of Schwarz lemma’s type\",\"authors\":\"Igor Petkov, Ruslan Salimov, Mariia Stefanchuk\",\"doi\":\"10.4153/s0008439523000942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a nonlinear Beltrami equation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_\\\\theta =\\\\sigma \\\\,|f_r|^m f_r$</span></span></img></span></span> in polar coordinates <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(r,\\\\theta ),$</span></span></img></span></span> which becomes the classical Cauchy–Riemann system under <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m=0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sigma =ir.$</span></span></img></span></span> Using the isoperimetric technique, various lower estimates for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$|f(z)|/|z|, f(0)=0,$</span></span></img></span></span> as <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231223041908670-0003:S0008439523000942:S0008439523000942_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$z\\\\to 0,$</span></span></img></span></span> are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了极坐标 $(r,\theta ) $ 下的非线性贝尔特拉米方程 $f_\theta =\sigma \,|f_r|^m f_r$,该方程在 $m=0$ 和 $\sigma =ir 条件下成为经典的考奇-黎曼系统。利用等周技术,在复数/方向扩张的适当积分条件下,导出了当 $z\to 0 时 $|f(z)|/|z|, f(0)=0,$ 的各种下限估计。通过几个例子说明了上述边界的尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Beltrami equation: lower estimates of Schwarz lemma’s type

We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|^m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy–Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信