Mona H. Gomaa, Ahmed Ibrahim, Kh. El-Sayed, Z. Abdel Hamid
{"title":"利用 TiO2 和 ZnO 纳米粒子提高环保型聚苯胺涂层的疏水性","authors":"Mona H. Gomaa, Ahmed Ibrahim, Kh. El-Sayed, Z. Abdel Hamid","doi":"10.1002/sia.7280","DOIUrl":null,"url":null,"abstract":"This article clarifies the thin layer deposition of superhydrophobic coating using eco-friendly polymer (polyaniline [PANI]) incorporated with TiO<sub>2</sub> and ZnO nanoparticles on indium tin oxide substrate. Using the cyclic voltammetry method, in situ polymerization of PANI incorporated with hybrid (TiO<sub>2</sub>–ZnO) was accomplished. The morphology and hydrophobicity of electro-deposited films were examined; the impact of deposition cycles was also investigated. The morphological structure was studied using field-emission scanning electron microscopy and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis proved the incorporation of nanoparticles into the composite matrix. Additionally, the water contact angle of the PANI composite was found to be 150.4°, and the findings reflected that (TiO<sub>2</sub>–ZnO) nanoparticles were significantly implicated in enhancing this superhydrophobicity. The surface roughness of the PANI matrix was increased when TiO<sub>2</sub> and ZnO are added, as was shown by atomic force microscope investigation.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the hydrophobicity of eco-friendly polyaniline coating using TiO2 and ZnO nanoparticles\",\"authors\":\"Mona H. Gomaa, Ahmed Ibrahim, Kh. El-Sayed, Z. Abdel Hamid\",\"doi\":\"10.1002/sia.7280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article clarifies the thin layer deposition of superhydrophobic coating using eco-friendly polymer (polyaniline [PANI]) incorporated with TiO<sub>2</sub> and ZnO nanoparticles on indium tin oxide substrate. Using the cyclic voltammetry method, in situ polymerization of PANI incorporated with hybrid (TiO<sub>2</sub>–ZnO) was accomplished. The morphology and hydrophobicity of electro-deposited films were examined; the impact of deposition cycles was also investigated. The morphological structure was studied using field-emission scanning electron microscopy and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis proved the incorporation of nanoparticles into the composite matrix. Additionally, the water contact angle of the PANI composite was found to be 150.4°, and the findings reflected that (TiO<sub>2</sub>–ZnO) nanoparticles were significantly implicated in enhancing this superhydrophobicity. The surface roughness of the PANI matrix was increased when TiO<sub>2</sub> and ZnO are added, as was shown by atomic force microscope investigation.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7280\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7280","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文阐明了在铟锡氧化物基底上使用与 TiO2 和 ZnO 纳米粒子结合的环保聚合物(聚苯胺 [PANI])薄层沉积超疏水涂层的方法。利用循环伏安法,完成了 PANI 与杂化物(TiO2-ZnO)的原位聚合。研究了电沉积薄膜的形态和疏水性,并探讨了沉积周期的影响。使用场发射扫描电子显微镜和高分辨率透射电子显微镜对形态结构进行了研究。X 射线光电子能谱和傅立叶变换红外光谱分析证明了纳米颗粒与复合基质的结合。此外,还发现 PANI 复合材料的水接触角为 150.4°,研究结果表明(TiO2-ZnO)纳米粒子在增强这种超疏水性能方面发挥了重要作用。原子力显微镜研究表明,加入 TiO2 和 ZnO 后,PANI 基体的表面粗糙度增加。
Boosting the hydrophobicity of eco-friendly polyaniline coating using TiO2 and ZnO nanoparticles
This article clarifies the thin layer deposition of superhydrophobic coating using eco-friendly polymer (polyaniline [PANI]) incorporated with TiO2 and ZnO nanoparticles on indium tin oxide substrate. Using the cyclic voltammetry method, in situ polymerization of PANI incorporated with hybrid (TiO2–ZnO) was accomplished. The morphology and hydrophobicity of electro-deposited films were examined; the impact of deposition cycles was also investigated. The morphological structure was studied using field-emission scanning electron microscopy and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis proved the incorporation of nanoparticles into the composite matrix. Additionally, the water contact angle of the PANI composite was found to be 150.4°, and the findings reflected that (TiO2–ZnO) nanoparticles were significantly implicated in enhancing this superhydrophobicity. The surface roughness of the PANI matrix was increased when TiO2 and ZnO are added, as was shown by atomic force microscope investigation.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).