涡流场概率分布的伦德格伦-莫宁-诺维科夫方程的对称性

IF 0.6 4区 物理与天体物理 Q4 MECHANICS
V. N. Grebenev, A. N. Grishkov, M. Oberlack
{"title":"涡流场概率分布的伦德格伦-莫宁-诺维科夫方程的对称性","authors":"V. N. Grebenev,&nbsp;A. N. Grishkov,&nbsp;M. Oberlack","doi":"10.1134/S1028335823010044","DOIUrl":null,"url":null,"abstract":"<p>Polyakov [Nuclear Phys. B, 396, 1993] proposed a program for expanding the group of symmetries of hydrodynamic models to the conformal invariance of statistics in inverse cascades, where the conformal group is infinite-dimensional. This study presents group <i>G</i> of transformations of the equation for an <span>\\(n\\)</span>-point probability density function <i>f</i><sub><i>n</i></sub> (PDF) from an infinite chain of the Lundgren–Monin–Novikov equations (the statistical form of the Euler equations) for the field of a vortex of two-dimensional flow. The main result obtained is that the group <i>G</i> transforms conformally the characteristics of the zero-vorticity equation and, invariantly, the family of the <i>f</i><sub><i>n</i></sub> equations for the PDF along these lines. Along with other characteristics, the equation is not invariant. The action of <i>G</i> retains the PDF class. The results obtained can be used to study the invariance of the statistical properties in optical turbulence.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 3","pages":"92 - 96"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry of the Lundgren–Monin–Novikov Equation for the Probability Distribution of the Vortex Field\",\"authors\":\"V. N. Grebenev,&nbsp;A. N. Grishkov,&nbsp;M. Oberlack\",\"doi\":\"10.1134/S1028335823010044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polyakov [Nuclear Phys. B, 396, 1993] proposed a program for expanding the group of symmetries of hydrodynamic models to the conformal invariance of statistics in inverse cascades, where the conformal group is infinite-dimensional. This study presents group <i>G</i> of transformations of the equation for an <span>\\\\(n\\\\)</span>-point probability density function <i>f</i><sub><i>n</i></sub> (PDF) from an infinite chain of the Lundgren–Monin–Novikov equations (the statistical form of the Euler equations) for the field of a vortex of two-dimensional flow. The main result obtained is that the group <i>G</i> transforms conformally the characteristics of the zero-vorticity equation and, invariantly, the family of the <i>f</i><sub><i>n</i></sub> equations for the PDF along these lines. Along with other characteristics, the equation is not invariant. The action of <i>G</i> retains the PDF class. The results obtained can be used to study the invariance of the statistical properties in optical turbulence.</p>\",\"PeriodicalId\":533,\"journal\":{\"name\":\"Doklady Physics\",\"volume\":\"68 3\",\"pages\":\"92 - 96\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1028335823010044\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335823010044","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要波利亚科夫[核物理 B, 396, 1993]提出了一个方案,将流体力学模型的对称性群扩展到反级联中统计的保角不变性,其中保角群是无限维的。本研究提出了二维流涡旋场的 Lundgren-Monin-Novikov 方程(欧拉方程的统计形式)的无穷级联的(n\)-点概率密度函数 fn (PDF) 方程的变换群 G。得到的主要结果是,G 组对零涡度方程的特征进行了保角变换,并且不变地对 PDF 的 fn 方程族进行了保角变换。与其他特征一起,该方程并不是不变的。G 的作用保留了 PDF 类。所得结果可用于研究光学湍流中统计特性的不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry of the Lundgren–Monin–Novikov Equation for the Probability Distribution of the Vortex Field

Polyakov [Nuclear Phys. B, 396, 1993] proposed a program for expanding the group of symmetries of hydrodynamic models to the conformal invariance of statistics in inverse cascades, where the conformal group is infinite-dimensional. This study presents group G of transformations of the equation for an \(n\)-point probability density function fn (PDF) from an infinite chain of the Lundgren–Monin–Novikov equations (the statistical form of the Euler equations) for the field of a vortex of two-dimensional flow. The main result obtained is that the group G transforms conformally the characteristics of the zero-vorticity equation and, invariantly, the family of the fn equations for the PDF along these lines. Along with other characteristics, the equation is not invariant. The action of G retains the PDF class. The results obtained can be used to study the invariance of the statistical properties in optical turbulence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Physics
Doklady Physics 物理-力学
CiteScore
1.40
自引率
12.50%
发文量
12
审稿时长
4-8 weeks
期刊介绍: Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信