Li4Ti5O12 的温度拉曼研究及其带数的模糊性

IF 2.4 3区 化学 Q2 SPECTROSCOPY
Aleksey A. Nikiforov, Alexander S. Krylov, Svetlana N. Krylova, Vadim S. Gorshkov, Dmitry V. Pelegov
{"title":"Li4Ti5O12 的温度拉曼研究及其带数的模糊性","authors":"Aleksey A. Nikiforov,&nbsp;Alexander S. Krylov,&nbsp;Svetlana N. Krylova,&nbsp;Vadim S. Gorshkov,&nbsp;Dmitry V. Pelegov","doi":"10.1002/jrs.6641","DOIUrl":null,"url":null,"abstract":"<p>The two primary physical methods for identifying lithium titanate, a negative electrode material used commercially, are X-Ray diffraction and Raman spectroscopy. Although there are many publications on this topic, they are focused mainly on chemistry, so there are still some points that require clarification from a physical and methodological point of view. Difference of experimentally observed and theoretically predicted Raman spectra was explained through a combination of experiments and computations. The work comprises experiments and computations to explain why there are different numbers of predicted and observed Raman-active bands. Our low-temperature study and the analysis of thermal shifts during heating led us to conclude that the approach with surplus bands is advantageous and we recommend using major F<sub>2g</sub> band shifts to estimate the sample heating.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 3","pages":"406-415"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Raman study of Li4Ti5O12 and ambiguity in the number of its bands\",\"authors\":\"Aleksey A. Nikiforov,&nbsp;Alexander S. Krylov,&nbsp;Svetlana N. Krylova,&nbsp;Vadim S. Gorshkov,&nbsp;Dmitry V. Pelegov\",\"doi\":\"10.1002/jrs.6641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The two primary physical methods for identifying lithium titanate, a negative electrode material used commercially, are X-Ray diffraction and Raman spectroscopy. Although there are many publications on this topic, they are focused mainly on chemistry, so there are still some points that require clarification from a physical and methodological point of view. Difference of experimentally observed and theoretically predicted Raman spectra was explained through a combination of experiments and computations. The work comprises experiments and computations to explain why there are different numbers of predicted and observed Raman-active bands. Our low-temperature study and the analysis of thermal shifts during heating led us to conclude that the approach with surplus bands is advantageous and we recommend using major F<sub>2g</sub> band shifts to estimate the sample heating.</p>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"55 3\",\"pages\":\"406-415\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6641\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6641","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

X 射线衍射和拉曼光谱是鉴别钛酸锂(一种商用负极材料)的两种主要物理方法。虽然有关这一主题的出版物很多,但主要集中在化学方面,因此从物理和方法学的角度来看,仍有一些问题需要澄清。实验观察到的拉曼光谱与理论预测的拉曼光谱之间的差异是通过实验和计算相结合来解释的。这项工作包括实验和计算,以解释为什么预测和观测到的拉曼活性带数量不同。我们的低温研究和对加热过程中热位移的分析使我们得出结论:使用剩余带的方法是有优势的,我们建议使用主要的 F2g 带位移来估计样品的加热情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature Raman study of Li4Ti5O12 and ambiguity in the number of its bands

Temperature Raman study of Li4Ti5O12 and ambiguity in the number of its bands

Temperature Raman study of Li4Ti5O12 and ambiguity in the number of its bands

The two primary physical methods for identifying lithium titanate, a negative electrode material used commercially, are X-Ray diffraction and Raman spectroscopy. Although there are many publications on this topic, they are focused mainly on chemistry, so there are still some points that require clarification from a physical and methodological point of view. Difference of experimentally observed and theoretically predicted Raman spectra was explained through a combination of experiments and computations. The work comprises experiments and computations to explain why there are different numbers of predicted and observed Raman-active bands. Our low-temperature study and the analysis of thermal shifts during heating led us to conclude that the approach with surplus bands is advantageous and we recommend using major F2g band shifts to estimate the sample heating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
8.00%
发文量
185
审稿时长
3.0 months
期刊介绍: The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications. Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信