聚合物凝胶弹性对复合凝聚相行为的影响

IF 4.7 Q1 POLYMER SCIENCE
Kathryn G. Wilcox, Kai R. Yamagami, Brittany K. Roopnarine, Adam Linscott and Svetlana Morozova*, 
{"title":"聚合物凝胶弹性对复合凝聚相行为的影响","authors":"Kathryn G. Wilcox,&nbsp;Kai R. Yamagami,&nbsp;Brittany K. Roopnarine,&nbsp;Adam Linscott and Svetlana Morozova*,&nbsp;","doi":"10.1021/acspolymersau.3c00027","DOIUrl":null,"url":null,"abstract":"<p >Gels are key materials in biological systems such as tissues and may control biocondensate formation and structure. To further understand the effects of elastic environments on biomacromolecular assembly, we have investigated the phase behavior and radii of complex coacervate droplets in polyacrylamide (PAM) networks as a function of gel modulus. Poly-<span>l</span>-lysine (PLL) and sodium hyaluronate (HA) complex coacervate phases were prepared in PAM gels with moduli varying from 0.035 to 15.0 kPa. The size of the complex coacervate droplets is reported from bright-field microscopy and confocal fluorescence microscopy. Overall, the complex coacervate droplet volume decreases inversely with the modulus. Fluorescence microscopy is also used to determine the phase behavior and concentration of fluorescently tagged HA in the complex coacervate phases as a function of ionic strength (100–270 mM). We find that the critical ionic strength and complex coacervate stability are nonmonotonic as a function of the network modulus and that the local gel concentration can be used to control phase behavior and complex coacervate droplet size scale. By understanding how elastic environments influence simple electrostatic assembly, we can further understand how biomacromolecules exist in complex, crowded, and elastic cellular environments.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 2","pages":"109–119"},"PeriodicalIF":4.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00027","citationCount":"0","resultStr":"{\"title\":\"Effect of Polymer Gel Elasticity on Complex Coacervate Phase Behavior\",\"authors\":\"Kathryn G. Wilcox,&nbsp;Kai R. Yamagami,&nbsp;Brittany K. Roopnarine,&nbsp;Adam Linscott and Svetlana Morozova*,&nbsp;\",\"doi\":\"10.1021/acspolymersau.3c00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Gels are key materials in biological systems such as tissues and may control biocondensate formation and structure. To further understand the effects of elastic environments on biomacromolecular assembly, we have investigated the phase behavior and radii of complex coacervate droplets in polyacrylamide (PAM) networks as a function of gel modulus. Poly-<span>l</span>-lysine (PLL) and sodium hyaluronate (HA) complex coacervate phases were prepared in PAM gels with moduli varying from 0.035 to 15.0 kPa. The size of the complex coacervate droplets is reported from bright-field microscopy and confocal fluorescence microscopy. Overall, the complex coacervate droplet volume decreases inversely with the modulus. Fluorescence microscopy is also used to determine the phase behavior and concentration of fluorescently tagged HA in the complex coacervate phases as a function of ionic strength (100–270 mM). We find that the critical ionic strength and complex coacervate stability are nonmonotonic as a function of the network modulus and that the local gel concentration can be used to control phase behavior and complex coacervate droplet size scale. By understanding how elastic environments influence simple electrostatic assembly, we can further understand how biomacromolecules exist in complex, crowded, and elastic cellular environments.</p>\",\"PeriodicalId\":72049,\"journal\":{\"name\":\"ACS polymers Au\",\"volume\":\"4 2\",\"pages\":\"109–119\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS polymers Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

凝胶是组织等生物系统中的关键材料,可控制生物凝胶的形成和结构。为了进一步了解弹性环境对生物分子组装的影响,我们研究了聚丙烯酰胺(PAM)网络中复合凝聚液滴的相行为和半径与凝胶模量的函数关系。我们在模量为 0.035 至 15.0 kPa 的 PAM 凝胶中制备了聚赖氨酸(PLL)和透明质酸钠(HA)复合共蒸物相。明视野显微镜和共聚焦荧光显微镜显示了复合共润湿液滴的大小。总体而言,复合凝聚态液滴的体积与模量成反比减少。荧光显微镜还用于确定相行为和荧光标记的 HA 在复合凝聚相中的浓度与离子强度(100-270 毫摩尔)的函数关系。我们发现,临界离子强度和复合凝聚态稳定性与网络模量的函数是非单调的,而局部凝胶浓度可用于控制相行为和复合凝聚态液滴的大小尺度。通过了解弹性环境如何影响简单的静电组装,我们可以进一步了解生物大分子如何存在于复杂、拥挤和富有弹性的细胞环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Polymer Gel Elasticity on Complex Coacervate Phase Behavior

Effect of Polymer Gel Elasticity on Complex Coacervate Phase Behavior

Effect of Polymer Gel Elasticity on Complex Coacervate Phase Behavior

Gels are key materials in biological systems such as tissues and may control biocondensate formation and structure. To further understand the effects of elastic environments on biomacromolecular assembly, we have investigated the phase behavior and radii of complex coacervate droplets in polyacrylamide (PAM) networks as a function of gel modulus. Poly-l-lysine (PLL) and sodium hyaluronate (HA) complex coacervate phases were prepared in PAM gels with moduli varying from 0.035 to 15.0 kPa. The size of the complex coacervate droplets is reported from bright-field microscopy and confocal fluorescence microscopy. Overall, the complex coacervate droplet volume decreases inversely with the modulus. Fluorescence microscopy is also used to determine the phase behavior and concentration of fluorescently tagged HA in the complex coacervate phases as a function of ionic strength (100–270 mM). We find that the critical ionic strength and complex coacervate stability are nonmonotonic as a function of the network modulus and that the local gel concentration can be used to control phase behavior and complex coacervate droplet size scale. By understanding how elastic environments influence simple electrostatic assembly, we can further understand how biomacromolecules exist in complex, crowded, and elastic cellular environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信