{"title":"表征生物样本中 PFAS 负担的技术:最新见解和依然存在的挑战","authors":"Dilani Perera, Wesley Scott, Rachel Smolinski, Leenia Mukhopadhyay, Carrie A. McDonough","doi":"10.1016/j.teac.2023.e00224","DOIUrl":null,"url":null,"abstract":"<div><p>Per/polyfluoroalkyl substances (PFASs) are a class of ubiquitous environmental contaminants associated with several adverse health effects in humans and animals. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) has traditionally been used to provide targeted quantitation of PFASs in biological samples. The analyte lists covered by targeted LC-MS/MS methods have grown rapidly as more PFASs have been discovered, though not all organofluorine is amenable to this technique. Integrative techniques measuring total organofluorine (TOF) coupled with LC-MS/MS analysis demonstrate that a significant fraction of TOF in biological samples is not captured by LC-MS/MS. This missing organofluorine may be contributed by PFASs that are not amenable to typical PFAS analytical conditions. Here, we review recent progress in quantifying total PFAS burden and identifying the compounds that comprise the unidentified organofluorine fraction (UOF), with a focus on human biological samples. While LC coupled to high-resolution mass spectrometry (LC-HRMS) has identified several novel PFASs in biological samples, these efforts do not appear to fully explain UOF content. Closing the UOF gap will necessitate the development of additional analytical approaches to broaden the chemical space captured by PFAS analysis. We highlight the use of additional chromatographic methods, advanced separation approaches such as ion mobility spectrometry (IMS), and continued improvement of HRMS semi-quantitation methods as promising paths forward to close the UOF gap.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"41 ","pages":"Article e00224"},"PeriodicalIF":11.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214158823000302/pdfft?md5=72c2464f92f330bc59de4a333b06bc11&pid=1-s2.0-S2214158823000302-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Techniques to characterize PFAS burden in biological samples: Recent insights and remaining challenges\",\"authors\":\"Dilani Perera, Wesley Scott, Rachel Smolinski, Leenia Mukhopadhyay, Carrie A. McDonough\",\"doi\":\"10.1016/j.teac.2023.e00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Per/polyfluoroalkyl substances (PFASs) are a class of ubiquitous environmental contaminants associated with several adverse health effects in humans and animals. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) has traditionally been used to provide targeted quantitation of PFASs in biological samples. The analyte lists covered by targeted LC-MS/MS methods have grown rapidly as more PFASs have been discovered, though not all organofluorine is amenable to this technique. Integrative techniques measuring total organofluorine (TOF) coupled with LC-MS/MS analysis demonstrate that a significant fraction of TOF in biological samples is not captured by LC-MS/MS. This missing organofluorine may be contributed by PFASs that are not amenable to typical PFAS analytical conditions. Here, we review recent progress in quantifying total PFAS burden and identifying the compounds that comprise the unidentified organofluorine fraction (UOF), with a focus on human biological samples. While LC coupled to high-resolution mass spectrometry (LC-HRMS) has identified several novel PFASs in biological samples, these efforts do not appear to fully explain UOF content. Closing the UOF gap will necessitate the development of additional analytical approaches to broaden the chemical space captured by PFAS analysis. We highlight the use of additional chromatographic methods, advanced separation approaches such as ion mobility spectrometry (IMS), and continued improvement of HRMS semi-quantitation methods as promising paths forward to close the UOF gap.</p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"41 \",\"pages\":\"Article e00224\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000302/pdfft?md5=72c2464f92f330bc59de4a333b06bc11&pid=1-s2.0-S2214158823000302-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000302\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000302","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Techniques to characterize PFAS burden in biological samples: Recent insights and remaining challenges
Per/polyfluoroalkyl substances (PFASs) are a class of ubiquitous environmental contaminants associated with several adverse health effects in humans and animals. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) has traditionally been used to provide targeted quantitation of PFASs in biological samples. The analyte lists covered by targeted LC-MS/MS methods have grown rapidly as more PFASs have been discovered, though not all organofluorine is amenable to this technique. Integrative techniques measuring total organofluorine (TOF) coupled with LC-MS/MS analysis demonstrate that a significant fraction of TOF in biological samples is not captured by LC-MS/MS. This missing organofluorine may be contributed by PFASs that are not amenable to typical PFAS analytical conditions. Here, we review recent progress in quantifying total PFAS burden and identifying the compounds that comprise the unidentified organofluorine fraction (UOF), with a focus on human biological samples. While LC coupled to high-resolution mass spectrometry (LC-HRMS) has identified several novel PFASs in biological samples, these efforts do not appear to fully explain UOF content. Closing the UOF gap will necessitate the development of additional analytical approaches to broaden the chemical space captured by PFAS analysis. We highlight the use of additional chromatographic methods, advanced separation approaches such as ion mobility spectrometry (IMS), and continued improvement of HRMS semi-quantitation methods as promising paths forward to close the UOF gap.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.