三维微波流体方程在变指数函数空间中的好求解性

IF 1.3 4区 数学 Q1 MATHEMATICS
Muhammad Zainul Abidin, Muhammad Marwan, Naeem Ullah, Ahmed Mohamed Zidan
{"title":"三维微波流体方程在变指数函数空间中的好求解性","authors":"Muhammad Zainul Abidin, Muhammad Marwan, Naeem Ullah, Ahmed Mohamed Zidan","doi":"10.1155/2023/4083997","DOIUrl":null,"url":null,"abstract":"In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are main tools to obtain the results. Moreover, the results discussed in our work show the Gevrey class regularity of solution to the Cauchy problem of micropolar fluid equations.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations\",\"authors\":\"Muhammad Zainul Abidin, Muhammad Marwan, Naeem Ullah, Ahmed Mohamed Zidan\",\"doi\":\"10.1155/2023/4083997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are main tools to obtain the results. Moreover, the results discussed in our work show the Gevrey class regularity of solution to the Cauchy problem of micropolar fluid equations.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4083997\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2023/4083997","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维微波流体方程的 Cauchy 问题。对于较小的初始数据,在变分量傅里叶-贝索夫空间中,我们得到了全局好求结果。Littlewood-Paley 分解法和傅里叶定位技术是获得结果的主要工具。此外,我们工作中讨论的结果显示了微极性流体方程 Cauchy 问题解的 Gevrey 类正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations
In this paper, we work on the Cauchy problem of the three-dimensional micropolar fluid equations. For small initial data, in the variable-exponent Fourier–Besov spaces, we achieve the global well-posedness result. The Littlewood–Paley decomposition method and the Fourier-localization technique are main tools to obtain the results. Moreover, the results discussed in our work show the Gevrey class regularity of solution to the Cauchy problem of micropolar fluid equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信