Yunqiao Huang, Yifu Li, Yi Zhang, Hesheng Yu, Zhongchao Tan
{"title":"用于二维和三维结构的近场电纺丝:基础、方法和应用","authors":"Yunqiao Huang, Yifu Li, Yi Zhang, Hesheng Yu, Zhongchao Tan","doi":"10.1016/j.mtadv.2023.100461","DOIUrl":null,"url":null,"abstract":"<p>Fabrication technologies based on electro-hydrodynamic processes have been extensively studied in the past decades. Near-field electrospinning (NFES), based on a stable cone-jet mode, is widely used to fabricate micro- and nano-scale fibrous structures for a variety of applications. However, previous reviews have given limited attention to the capabilities of NFES to fabricate 2D and 3D structures. This review introduces four key metrics of NFES capabilities, i.e., fidelity, resolution, response, and aspect ratio, to evaluate and summarize the advances of NFES technology. Specifically, the fundamental theories of the electro-hydrodynamic process are discussed to understand the effect of operating parameters on the metrics of NFES capabilities. Then, the methods to improve the metrics of NFES capabilities are summarized. Furthermore, the applications of NFES technology are reviewed by highlighting the functionality of each metric of the capabilities. Finally, the achievements and existing gaps in NFES technology are discussed to offer insights into future directions in the field.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"24 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-field electrospinning for 2D and 3D structuring: Fundamentals, methods, and applications\",\"authors\":\"Yunqiao Huang, Yifu Li, Yi Zhang, Hesheng Yu, Zhongchao Tan\",\"doi\":\"10.1016/j.mtadv.2023.100461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fabrication technologies based on electro-hydrodynamic processes have been extensively studied in the past decades. Near-field electrospinning (NFES), based on a stable cone-jet mode, is widely used to fabricate micro- and nano-scale fibrous structures for a variety of applications. However, previous reviews have given limited attention to the capabilities of NFES to fabricate 2D and 3D structures. This review introduces four key metrics of NFES capabilities, i.e., fidelity, resolution, response, and aspect ratio, to evaluate and summarize the advances of NFES technology. Specifically, the fundamental theories of the electro-hydrodynamic process are discussed to understand the effect of operating parameters on the metrics of NFES capabilities. Then, the methods to improve the metrics of NFES capabilities are summarized. Furthermore, the applications of NFES technology are reviewed by highlighting the functionality of each metric of the capabilities. Finally, the achievements and existing gaps in NFES technology are discussed to offer insights into future directions in the field.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100461\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100461","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Near-field electrospinning for 2D and 3D structuring: Fundamentals, methods, and applications
Fabrication technologies based on electro-hydrodynamic processes have been extensively studied in the past decades. Near-field electrospinning (NFES), based on a stable cone-jet mode, is widely used to fabricate micro- and nano-scale fibrous structures for a variety of applications. However, previous reviews have given limited attention to the capabilities of NFES to fabricate 2D and 3D structures. This review introduces four key metrics of NFES capabilities, i.e., fidelity, resolution, response, and aspect ratio, to evaluate and summarize the advances of NFES technology. Specifically, the fundamental theories of the electro-hydrodynamic process are discussed to understand the effect of operating parameters on the metrics of NFES capabilities. Then, the methods to improve the metrics of NFES capabilities are summarized. Furthermore, the applications of NFES technology are reviewed by highlighting the functionality of each metric of the capabilities. Finally, the achievements and existing gaps in NFES technology are discussed to offer insights into future directions in the field.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.