通过 SOLIT-Sharp Optimal Lepskiĭ-Inspired Tuning 在统计逆问题中实现自适应最小优化

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED
Housen Li, Frank Werner
{"title":"通过 SOLIT-Sharp Optimal Lepskiĭ-Inspired Tuning 在统计逆问题中实现自适应最小优化","authors":"Housen Li, Frank Werner","doi":"10.1088/1361-6420/ad12e0","DOIUrl":null,"url":null,"abstract":"We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form <inline-formula>\n<tex-math><?CDATA $\\widehat f_\\alpha = q_\\alpha \\left(T\\,^*T\\right)T\\,^*Y$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>T</mml:mi></mml:mrow></mml:mfenced><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>Y</mml:mi></mml:math>\n<inline-graphic xlink:href=\"ipad12e0ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, where <italic toggle=\"yes\">Y</italic> is the available data, <italic toggle=\"yes\">T</italic> the forward operator, <inline-formula>\n<tex-math><?CDATA $\\left(q_\\alpha\\right)_{\\alpha \\in \\mathcal A}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mfenced close=\")\" open=\"(\"><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:mfenced><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ipad12e0ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> an ordered filter, and <italic toggle=\"yes\">α</italic> &gt; 0 a regularization parameter. Whenever such a method is used in practice, <italic toggle=\"yes\">α</italic> has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible <italic toggle=\"yes\">α</italic> in the sense that mean squared error (MSE) <inline-formula>\n<tex-math><?CDATA $\\mathbb{E} [\\Vert \\widehat f_\\alpha - f^\\dagger\\Vert^2]$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"double-struck\">E</mml:mi></mml:mrow><mml:mo stretchy=\"false\">[</mml:mo><mml:mo>∥</mml:mo><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup><mml:mrow><mml:msup><mml:mo>∥</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy=\"false\">]</mml:mo></mml:math>\n<inline-graphic xlink:href=\"ipad12e0ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> w.r.t. the true solution <inline-formula>\n<tex-math><?CDATA $f^\\dagger$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ipad12e0ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an <italic toggle=\"yes\">a posteriori</italic> parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on <italic toggle=\"yes\">Y</italic> and the noise level <italic toggle=\"yes\">σ</italic> as well as the operator <italic toggle=\"yes\">T</italic> and the filter <inline-formula>\n<tex-math><?CDATA $\\left(q_\\alpha\\right)_{\\alpha \\in \\mathcal A}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mfenced close=\")\" open=\"(\"><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:mfenced><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ipad12e0ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and does not require any problem-dependent tuning of further parameters. We prove an oracle inequality for the corresponding MSE in a general setting and derive the rates of convergence in different scenarios. By a careful analysis we show that no other <italic toggle=\"yes\">a posteriori</italic> parameter choice rule can yield a better performance in terms of the order of the convergence rate of the MSE. In particular, our results reveal that the typical understanding of Lepskiĭ-type methods in inverse problems leading to a loss of a log factor is wrong. In addition, the empirical performance of SOLIT is examined in simulations.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"43 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning\",\"authors\":\"Housen Li, Frank Werner\",\"doi\":\"10.1088/1361-6420/ad12e0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form <inline-formula>\\n<tex-math><?CDATA $\\\\widehat f_\\\\alpha = q_\\\\alpha \\\\left(T\\\\,^*T\\\\right)T\\\\,^*Y$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>T</mml:mi></mml:mrow></mml:mfenced><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>Y</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"ipad12e0ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, where <italic toggle=\\\"yes\\\">Y</italic> is the available data, <italic toggle=\\\"yes\\\">T</italic> the forward operator, <inline-formula>\\n<tex-math><?CDATA $\\\\left(q_\\\\alpha\\\\right)_{\\\\alpha \\\\in \\\\mathcal A}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:mfenced><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ipad12e0ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> an ordered filter, and <italic toggle=\\\"yes\\\">α</italic> &gt; 0 a regularization parameter. Whenever such a method is used in practice, <italic toggle=\\\"yes\\\">α</italic> has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible <italic toggle=\\\"yes\\\">α</italic> in the sense that mean squared error (MSE) <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{E} [\\\\Vert \\\\widehat f_\\\\alpha - f^\\\\dagger\\\\Vert^2]$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">E</mml:mi></mml:mrow><mml:mo stretchy=\\\"false\\\">[</mml:mo><mml:mo>∥</mml:mo><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup><mml:mrow><mml:msup><mml:mo>∥</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy=\\\"false\\\">]</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"ipad12e0ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> w.r.t. the true solution <inline-formula>\\n<tex-math><?CDATA $f^\\\\dagger$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ipad12e0ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an <italic toggle=\\\"yes\\\">a posteriori</italic> parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on <italic toggle=\\\"yes\\\">Y</italic> and the noise level <italic toggle=\\\"yes\\\">σ</italic> as well as the operator <italic toggle=\\\"yes\\\">T</italic> and the filter <inline-formula>\\n<tex-math><?CDATA $\\\\left(q_\\\\alpha\\\\right)_{\\\\alpha \\\\in \\\\mathcal A}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:mfenced><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ipad12e0ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and does not require any problem-dependent tuning of further parameters. We prove an oracle inequality for the corresponding MSE in a general setting and derive the rates of convergence in different scenarios. By a careful analysis we show that no other <italic toggle=\\\"yes\\\">a posteriori</italic> parameter choice rule can yield a better performance in terms of the order of the convergence rate of the MSE. In particular, our results reveal that the typical understanding of Lepskiĭ-type methods in inverse problems leading to a loss of a log factor is wrong. In addition, the empirical performance of SOLIT is examined in simulations.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad12e0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad12e0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是可分离希尔伯特空间中的统计线性逆问题和基于滤波器的重构方法,其形式为 fˆα=qαT∗TT∗Y,其中 Y 是可用数据,T 是前向算子,qαα∈A 是有序滤波器,α > 0 是正则化参数。无论何时在实践中使用这种方法,都必须适当地选择 α。通常情况下,我们的目标是找到或至少近似找到最佳的 α,即与真解 f† 的均方误差(MSE)E[∥fˆα-f†∥2]最小。在本文中,我们介绍了锐利最优 Lepskiĭ-Inspired Tuning (SOLIT) 方法,它产生了一种后验参数选择规则,确保了自适应最小收敛速率。它只取决于 Y 和噪声水平 σ 以及算子 T 和滤波器 qαα∈A,不需要根据问题调整其他参数。我们证明了一般情况下相应 MSE 的oracle 不等式,并推导出不同情况下的收敛率。通过仔细分析,我们发现就 MSE 收敛率的阶数而言,没有其他后验参数选择规则能产生更好的性能。特别是,我们的结果表明,在逆问题中,对 Lepskiĭ 型方法会导致对数因子损失的典型理解是错误的。此外,我们还通过仿真检验了 SOLIT 的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning
We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form fˆα=qαTTTY , where Y is the available data, T the forward operator, qααA an ordered filter, and α > 0 a regularization parameter. Whenever such a method is used in practice, α has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible α in the sense that mean squared error (MSE) E[fˆαf2] w.r.t. the true solution f is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an a posteriori parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on Y and the noise level σ as well as the operator T and the filter qααA and does not require any problem-dependent tuning of further parameters. We prove an oracle inequality for the corresponding MSE in a general setting and derive the rates of convergence in different scenarios. By a careful analysis we show that no other a posteriori parameter choice rule can yield a better performance in terms of the order of the convergence rate of the MSE. In particular, our results reveal that the typical understanding of Lepskiĭ-type methods in inverse problems leading to a loss of a log factor is wrong. In addition, the empirical performance of SOLIT is examined in simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信